Bhutani M, Foureau DM, Atrash S, Voorhees PM, Usmani SZ. Extramedullary multiple myeloma. Leukemia. 2020;34:1–20.

Article 
PubMed 

Google Scholar
 

Zanwar S, Novak J, Gonsalves WI, Howe M, Braggio E, Rajkumar SV, et al. Extramedullary myeloma is genomically complex and characterized by near-universal MAPK pathway alterations. Blood Adv. 2025;9:3979–87.

Nakamoto-Matsubara R, Nardi V, Horick N, Fukushima T, Han RS, Shome R, et al. Integration of clinical outcomes and molecular features in extramedullary disease in multiple myeloma. Blood Cancer J. 2024;14:224.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Usmani SZ, Heuck C, Mitchell A, Szymonifka J, Nair B, Hoering A, et al. Extramedullary disease portends poor prognosis in multiple myeloma and is over-represented in high-risk disease even in the era of novel agents. Haematologica. 2012;97:1761–7.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zanwar S, Ho M, Lin Y, Kapoor P, Binder M, Buadi FK, et al. Natural history, predictors of development of extramedullary disease, and treatment outcomes for patients with extramedullary multiple myeloma. Am J Hematol. 2023;98:1540–9.

Article 
PubMed 

Google Scholar
 

Sidana S, Patel KK, Peres LC, Bansal R, Kocoglu MH, Shune L, et al. Safety and efficacy of standard-of-care ciltacabtagene autoleucel for relapsed/refractory multiple myeloma. Blood. 2025;145:85–97.

Article 
PubMed 

Google Scholar
 

Riedhammer C, Bassermann F, Besemer B, Bewarder M, Brunner F, Carpinteiro A, et al. Real-world analysis of teclistamab in 123 RRMM patients from Germany. Leukemia. 2024;38:365–71.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zanwar S, Sidana S, Shune L, Puglianini OC, Pasvolsky O, Gonzalez R, et al. Impact of extramedullary multiple myeloma on outcomes with idecabtagene vicleucel. J Hematol Oncol. 2024;17:42.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kumar S, Paiva B, Anderson KC, Durie B, Landgren O, Moreau P, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17:e328–e346.

Article 
PubMed 

Google Scholar
 

Moreau P, Attal M, Caillot D, Macro M, Karlin L, Garderet L, et al. Prospective evaluation of magnetic resonance imaging and [(18)F]fluorodeoxyglucose positron emission tomography-computed tomography at diagnosis and before maintenance therapy in symptomatic patients with multiple myeloma included in the IFM/DFCI 2009 trial: results of the IMAJEM study. J Clin Oncol. 2017;35:2911–8.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zamagni E, Nanni C, Dozza L, Carlier T, Bailly C, Tacchetti P, et al. Standardization of 18F-FDG–PET/CT according to Deauville criteria for metabolic complete response definition in newly diagnosed multiple myeloma. J Clin Oncol. 2021;39:116–25.

Article 
PubMed 

Google Scholar
 

Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32:3059–68.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cavo M, Terpos E, Nanni C, Moreau P, Lentzsch S, Zweegman S, et al. Role of (18)F-FDG PET/CT in the diagnosis and management of multiple myeloma and other plasma cell disorders: a consensus statement by the International Myeloma Working Group. Lancet Oncol. 2017;18:e206–e217.

Article 
PubMed 

Google Scholar
 

Nanni C, Zamagni E, Versari A, Chauvie S, Bianchi A, Rensi M, et al. Image interpretation criteria for FDG PET/CT in multiple myeloma: a new proposal from an Italian expert panel. IMPeTUs (Italian Myeloma criteria for PET Use). Eur J Nucl Med Mol Imaging. 2016;43:414–21.

Article 
PubMed 

Google Scholar
 

Kim TM, Paeng JC, Chun IK, Keam B, Jeon YK, Lee S-H, et al. Total lesion glycolysis in positron emission tomography is a better predictor of outcome than the International Prognostic Index for patients with diffuse large B cell lymphoma. Cancer. 2013;119:1195–202.

Article 
PubMed 

Google Scholar
 

Guo B, Tan X, Ke Q, Cen H. Prognostic value of baseline metabolic tumor volume and total lesion glycolysis in patients with lymphoma: a meta-analysis. PLoS ONE. 2019;14:e0210224.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sridhar P, Mercier G, Tan J, Truong MT, Daly B, Subramaniam RM. FDG PET metabolic tumor volume segmentation and pathologic volume of primary human solid tumors. AJR Am J Roentgenol. 2014;202:1114–9.

Article 
PubMed 

Google Scholar
 

Werner-Wasik M, Nelson AD, Choi W, Arai Y, Faulhaber PF, Kang P, et al. What is the best way to contour lung tumors on PET scans? Multiobserver validation of a gradient-based method using a NSCLC digital PET phantom. Int J Radiat Oncol Biol Phys. 2012;82:1164–71.

Article 
PubMed 

Google Scholar
 

Breen WG, Young JR, Hathcock MA, Kowalchuk RO, Thorpe MP, Bansal R, et al. Metabolic PET/CT analysis of aggressive Non-Hodgkin lymphoma prior to Axicabtagene Ciloleucel CAR-T infusion: predictors of progressive disease, survival, and toxicity. Blood Cancer J. 2023;13:127.

Article 
PubMed 
PubMed Central 

Google Scholar
 

St-Pierre F, Broski SM, Sun Z, Kocherginsky M, LaPlant B, Maurer MJ, et al. Prognostic impact of extranodal disease on PET/CT in follicular lymphoma: results from a validation study with ECOG 2408. Blood Neoplasia. 2025;2:100113.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zamagni E, Nanni C, Dozza L, Carlier T, Bailly C, Tacchetti P, et al. Standardization of (18)F-FDG-PET/CT according to Deauville criteria for metabolic complete response definition in newly diagnosed multiple myeloma. J Clin Oncol. 2021;39:116–25.

Article 
PubMed 

Google Scholar
 

Cottereau AS, Rebaud L, Trotman J, Feugier P, Nastoupil LJ, Bachy E, et al. Metabolic tumor volume predicts outcome in patients with advanced stage follicular lymphoma from the RELEVANCE trial. Ann Oncol. 2024;35:130–7.

Article 
PubMed 

Google Scholar
 

Park SY, Cho A, Yu WS, Lee CY, Lee JG, Kim DJ, et al. Prognostic value of total lesion glycolysis by 18F-FDG PET/CT in surgically resected stage IA non-small cell lung cancer. J Nucl Med. 2015;56:45–49.

Article 
PubMed 

Google Scholar
 

Sachpekidis C, Enqvist O, Ulén J, Kopp-Schneider A, Pan L, Mai EK, et al. Artificial intelligence-based, volumetric assessment of the bone marrow metabolic activity in [(18)F]FDG PET/CT predicts survival in multiple myeloma. Eur J Nucl Med Mol Imaging. 2024;51:2293–307.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Galli E, Guarneri A, Sorà F, Viscovo M, Pansini I, Maiolo E, et al. Baseline tumor burden assessed with AI-guided PET/CT Total Metabolic Tumor Volume (TMTV) and LDH levels predict efficacy of CAR-T in aggressive B-Cell lymphoma. Hematol Oncol. 2025;43:e70029.

Article 
PubMed 

Google Scholar