Galan, J. E. & Waksman, G. Protein-injection machines in bacteria. Cell 172, 1306–1318 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Deng, W. et al. Assembly, structure, function and regulation of type III secretion systems. Nat. Rev. Microbiol 15, 323–337 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Han J., et al. Infection biology of Salmonella enterica. EcoSal. Plus 12, eesp00012023 (2023).

Galán, J. E. & Curtiss, R. Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc. Natl. Acad. Sci. USA 86, 6383–6387 (1989).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Galán, J. E. Salmonella Typhimurium and inflammation: a pathogen-centric affair. Nat. Rev. Microbiol. 19, 716–725 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fattinger, S. A., Sellin, M. E. & Hardt, W. D. Salmonella effector driven invasion of the gut epithelium: breaking in and setting the house on fire. Curr. Opin. Microbiol 64, 9–18 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Shea, J. E., Hensel, M., Gleeson, C. & Holden, D. W. Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 93, 2593–2597 (1996).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hensel, M. et al. Simultaneous identification of bacterial virulence genes by negative selection. Science 269, 400–403 (1995).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Maier, L. et al. Granulocytes impose a tight bottleneck upon the gut luminal pathogen population during Salmonella typhimurium colitis. PLoS Pathog. 10, e1004557 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hapfelmeier, S. et al. The Salmonella pathogenicity island (SPI)-2 and SPI-1 type III secretion systems allow Salmonella serovar typhimurium to trigger colitis via MyD88-dependent and MyD88-independent mechanisms. J. Immunol. 174, 1675–1685 (2005).

Article 
CAS 
PubMed 

Google Scholar
 

LaRock, D. L., Chaudhary, A. & Miller, S. I. Salmonellae interactions with host processes. Nat. Rev. Microbiol 13, 191–205 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pillay T. D., et al. Speaking the host language: how Salmonella effector proteins manipulate the host. Microbiology (Reading) 169, 001342 (2023).

Jennings, E., Thurston, T. L. M. & Holden, D. W. Salmonella SPI-2 type III secretion system effectors: molecular mechanisms and physiological consequences. Cell Host Microbe 22, 217–231 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Haraga, A., Ohlson, M. B. & Miller, S. I. Salmonellae interplay with host cells. Nat. Rev. Microbiol 6, 53–66 (2008).

Article 
CAS 
PubMed 

Google Scholar
 

Chen, D. et al. Systematic reconstruction of an effector-gene network reveals determinants of Salmonella cellular and tissue tropism. Cell Host Microbe 29, 1531–1544.e9 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bayer-Santos, E. et al. The Salmonella effector SteD mediates MARCH8-dependent ubiquitination of MHC II molecules and inhibits T cell activation. Cell Host Microbe 20, 584–595 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Stapels, D. A. C. et al. Salmonella persisters undermine host immune defenses during antibiotic treatment. Science 362, 1156–1160 (2018).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Buckner, M. M. C., Croxen, M., Arena, E. T. & Finlay, B. B. A comprehensive study of the contribution of Salmonella enterica serovar Typhimurium SPI2 effectors to bacterial colonization, survival, and replication in typhoid fever, macrophage, and epithelial cell infection models. Virulence 2, 208–216 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Figueira R., Watson K. G., Holden D. W., Helaine S. Identification of Salmonella pathogenicity island-2 type iii secretion system effectors involved in intramacrophage replication of S. enterica serovar typhimurium: implications for rational vaccine design. mBio. https://doi.org/10.1128/mbio.00065-13 (2013).

Knuff-Janzen, K., Tupin, A., Yurist-Doutsch, S., Rowland, J. L. & Finlay, B. B. Multiple Salmonella-pathogenicity island 2 effectors are required to facilitate bacterial establishment of its intracellular niche and virulence. PLOS ONE 15, e0235020 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Matsuda S., Haneda T., Saito H., Miki T., Okada N. Salmonella enterica effectors SifA, SpvB, SseF, SseJ, and SteA contribute to type III secretion system 1-independent inflammation in a streptomycin-pretreated mouse model of colitis. Infect. Immun. 87, e00872-18 (2019).

Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. 97, 6640–6645 (2000).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Porwollik, S. et al. Defined single-gene and multi-gene deletion mutant collections in Salmonella enterica sv Typhimurium. PLoS One 9, e99820 (2014).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Zinder, N. D. & Lederberg, J. Genetic exchange in Salmonella. J. Bacteriol. 64, 679–699 (1952).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zinder, N. D. Bacterial transduction. J. Cell Physiol. Suppl. 45, 23–49 (1955).

Article 
CAS 
PubMed 

Google Scholar
 

Cherepanov, P. P. & Wackernagel, W. Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158, 9–14 (1995).

Article 
CAS 
PubMed 

Google Scholar
 

Shea, J. E., Beuzon, C. R., Gleeson, C., Mundy, R. & Holden, D. W. Influence of the Salmonella typhimurium pathogenicity island 2 type III secretion system on bacterial growth in the mouse. Infect. Immun. 67, 213–219 (1999).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lawley, T. D. et al. Genome-wide screen for Salmonella genes required for long-term systemic infection of the mouse. PLoS Pathog. 2, e11 (2006).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Newson, J. P. M. et al. Antibiotic-recalcitrant Salmonella exploits post-antibiotic microbiota disruption to achieve virulence-dependent transmission. Cell Rep. 44, 115969 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Meynell, G. G. & Stocker, B. A. D. Some hypotheses on the aetiology of fatal infections in partially resistant hosts and their application to mice challenged with Salmonella paratyphi-B or Salmonella typhimurium by Intraperitoneal injection. Microbiology 16, 38–58 (1957).

CAS 

Google Scholar
 

Bäumler, A. J., Tsolis, R. M., Valentine, P. J., Ficht, T. A. & Heffron, F. Synergistic effect of mutations in invA and lpfC on the ability of Salmonella typhimurium to cause murine typhoid. Infect. Immun. 65, 2254–2259 (1997).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Beuzón, C. R. et al. Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. The. EMBO J. 19, 3235–3249 (2000).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Daniel, B. B. J. et al. Assessing microbiome population dynamics using wild-type isogenic standardized hybrid (WISH)-tags. Nat. Microbiol 9, 1103–1116 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sintsova A., et al. mBARq: a versatile and user-friendly framework for the analysis of DNA barcodes from transposon insertion libraries, knockout mutants, and isogenic strain populations. Bioinformatics 40, btae078 (2024).

Nguyen, A. T. & McSorley, S. J. Fighting the enemy within: systemic immune defense against mucosal Salmonella infection. Immunol. Lett. 270, 106930 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Coburn, B., Li, Y., Owen, D., Vallance, B. A. & Finlay, B. B. Salmonella enterica serovar Typhimurium pathogenicity island 2 is necessary for complete virulence in a mouse model of infectious enterocolitis. Infect. Immun. 73, 3219–3227 (2005).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Barthel, M. et al. Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect. Immun. 71, 2839–2858 (2003). WD.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Stecher, B. et al. Comparison of Salmonella enterica serovar Typhimurium colitis in germfree mice and mice pretreated with streptomycin. Infect. Immun. 73, 3228–3241 (2005).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kaniga, K., Bossio, J. C. & Galán, J. E. The Salmonella typhimurium invasion genes invF and invG encode homologues of the AraC and PulD family of proteins. Mol. Microbiol 13, 555–568 (1994).

Article 
CAS 
PubMed 

Google Scholar
 

Coombes, B. rianK. et al. Analysis of the contribution of Salmonella pathogenicity islands 1 and 2 to enteric disease progression using a novel bovine ileal loop model and a murine model of infectious enterocolitis. Infect. Immun. 73, 7161–7169 (2005).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Stecher, B. et al. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol. 5, 2177–2189 (2007).

Article 
CAS 
PubMed 

Google Scholar
 

Diard, M. et al. Stabilization of cooperative virulence by the expression of an avirulent phenotype. Nature 494, 353–356 (2013).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Gül, E. et al. The microbiota conditions a gut milieu that selects for wild-type Salmonella Typhimurium virulence. PLoS Biol. 21, e3002253 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Spanò, S., Gao, X., Hannemann, S., Lara-Tejero, M. & Galán, J. E. A bacterial pathogen targets a host rab-family GTPase defense pathway with a GAP. Cell Host Microbe 19, 216–226 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Dolowschiak, T. et al. IFN-gamma hinders recovery from mucosal inflammation during antibiotic therapy for Salmonella gut infection. Cell Host Microbe 20, 238–249 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Fattinger, S. A. et al. Salmonella Typhimurium discreet-invasion of the murine gut absorptive epithelium. PLoS Pathog. 16, e1008503 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ruano-Gallego D., et al. Type III secretion system effectors form robust and flexible intracellular virulence networks. Science 371, eabc9531 (2021).

Sanchez-Garrido, J., Alberdi, L., Chatterjee, S., Frankel, G. & Mullineaux-Sanders, C. Type III secretion system effector subnetworks elicit distinct host immune responses to infection. Curr. Opin. Microbiol 64, 19–26 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Sanchez-Garrido, J., Ruano-Gallego, D., Choudhary, J. S. & Frankel, G. The type III secretion system effector network hypothesis. Trends Microbiol 30, 524–533 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Wibawa R. R., Li P., McCaffrey K. & Hartland E. L. Using Genomic Deletion Mutants to Investigate Effector-Triggered Immunity During Legionella pneumophila Infection, p 23-41. In Kufer T. A., Kaparakis-Liaskos M. (ed), Effector-Triggered Immunity: Methods and Protocols, Springer (2022).

O’Connor, T. J., Boyd, D., Dorer, M. S. & Isberg, R. R. Aggravating genetic interactions allow a solution to redundancy in a bacterial pathogen. Science 338, 1440–1444 (2012).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Nguyen, B. D. et al. Import of Aspartate and Malate by DcuABC Drives H(2)/fumarate respiration to promote initial Salmonella gut-lumen colonization in mice. Cell Host Microbe 27, 922–936.e6 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Laganenka, L. et al. Interplay between chemotaxis, quorum sensing, and metabolism regulates Escherichia coli-Salmonella Typhimurium interactions in vivo. PLoS Pathog. 21, e1013156 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chau N. Y. E., et al. (p)ppGpp-dependent regulation of the nucleotide hydrolase ppnn confers complement resistance in Salmonella enterica serovar typhimurium. Infect. Immun. 89, e00639-20 (2021).

Geiser P., et al. Salmonella enterica serovar typhimurium exploits cycling through epithelial cells to colonize human and murine enteroids. mBio 12, e02684-20 (2021).

Powers, T. R. et al. Intracellular niche-specific profiling reveals transcriptional adaptations required for the cytosolic lifestyle of Salmonella enterica. PLoS Pathog. 17, e1009280 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schubert, C. et al. Monosaccharides drive Salmonella gut colonization in a context-dependent or -independent manner. Nat. Commun. 16, 1735 (2025).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Spanò, S. & Galán, J. E. A Rab32-dependent pathway contributes to Salmonella typhi host restriction. Science 338, 960–963 (2012).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Gerondopoulos, A., Langemeyer, L., Liang, J.-R., Linford, A. & Barr, F. rancisA. BLOC-3 mutated in hermansky-pudlak syndrome Is a Rab32/38 guanine nucleotide exchange factor. Curr. Biol. 22, 2135–2139 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chen, M. et al. Itaconate is an effector of a Rab GTPase cell-autonomous host defense pathway against Salmonella. Science 369, 450–455 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lian, H. et al. Parkinson’s disease kinase LRRK2 coordinates a cell-intrinsic itaconate-dependent defence pathway against intracellular Salmonella. Nat. Microbiol 8, 1880–1895 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Michelucci, A. et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl. Acad. Sci. USA 110, 7820–7825 (2013).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hiyoshi, H. et al. Virulence factors perforate the pathogen-containing vacuole to signal efferocytosis. Cell Host Microbe 30, 163–170.e6 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Knodler, L. A. et al. Dissemination of invasive Salmonella via bacterial-induced extrusion of mucosal epithelia. Proc. Natl. Acad. Sci. USA 107, 17733–17738 (2010).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Grant, A. J. et al. Attenuated Salmonella Typhimurium lacking the pathogenicity island-2 type 3 secretion system grow to high bacterial numbers inside phagocytes in mice. PLoS Pathog. 8, e1003070 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Roudier, C., Fierer, J. & Guiney, D. G. Characterization of translation termination mutations in the spv operon of the Salmonella virulence plasmid pSDL2. J. Bacteriol. 174, 6418–6423 (1992).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Guiney D. G., Fierer J. The role of the spv genes in Salmonella pathogenesis. Front. Microbiol. 2, 129 (2011).

Lesnick, M. L., Reiner, N. E., Fierer, J. & Guiney, D. G. The Salmonella spvB virulence gene encodes an enzyme that ADP-ribosylates actin and destabilizes the cytoskeleton of eukaryotic cells. Mol. Microbiol 39, 1464–1470 (2001).

Article 
CAS 
PubMed 

Google Scholar
 

Tezcan-Merdol, D. et al. Actin is ADP-ribosylated by the Salmonella enterica virulence-associated protein SpvB. Mol. Microbiol 39, 606–619 (2001).

Article 
CAS 
PubMed 

Google Scholar
 

Libby, S. J., Lesnick, M., Hasegawa, P., Weidenhammer, E. & Guiney, D. G. The Salmonella virulence plasmid spv genes are required for cytopathology in human monocyte-derived macrophages. Cell Microbiol 2, 49–58 (2000).

Article 
CAS 
PubMed 

Google Scholar
 

Mazurkiewicz, P. et al. SpvC is a Salmonella effector with phosphothreonine lyase activity on host mitogen-activated protein kinases. Mol. Microbiol 67, 1371–1383 (2008).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Haneda, T. et al. Salmonella type III effector SpvC, a phosphothreonine lyase, contributes to reduction in inflammatory response during intestinal phase of infection. Cell Microbiol 14, 485–499 (2012).

Article 
CAS 
PubMed 

Google Scholar
 

Zhu, Y. et al. Structural insights into the enzymatic mechanism of the pathogenic MAPK phosphothreonine lyase. Mol. Cell 28, 899–913 (2007).

Article 
CAS 
PubMed 

Google Scholar
 

Grabe, G. J. et al. The Salmonella effector SpvD is a cysteine hydrolase with a serovar-specific polymorphism influencing catalytic activity, suppression of immune responses, and bacterial virulence. J. Biol. Chem. 291, 25853–25863 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rolhion, N. et al. Inhibition of nuclear transport of NF-ĸB p65 by the Salmonella type III secretion system effector SpvD. PLOS Pathog. 12, e1005653 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hoiseth, S. K. & Stocker, B. A. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291, 238–239 (1981).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Deatherage, D. E. & Barrick, J. E. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol. Biol. 1151, 165–188 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Grant, A. J. et al. Modelling within-host spatiotemporal dynamics of invasive bacterial disease. PLoS Biol. 6, e74 (2008).

Article 
PubMed 
PubMed Central 

Google Scholar