Zhu Q, Glazier BJ, Hinkel BC, Cao J, Liu L, Liang C, et al. Neuroendocrine regulation of energy metabolism involving different types of adipose tissues. Int J Mol Sci. 2019;20(11):2707.


Google Scholar
 

Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci AMS. 2013;9(2):191–200.


Google Scholar
 

Obesity. and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed 12 May 2025.

Ashraf MJ, Baweja P. Obesity: the ‘Huge’ problem in cardiovascular diseases. Mo Med. 2013;110(6):499–504.


Google Scholar
 

Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85–97.


Google Scholar
 

Wang W, Zhu N, Yan T, Shi YN, Chen J, Zhang CJ, et al. The crosstalk: exosomes and lipid metabolism. Cell Commun Signal. 2020;18(1):119.


Google Scholar
 

Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health. 2009;9:88.


Google Scholar
 

Neto A, Fernandes A, Barateiro A. The complex relationship between obesity and neurodegenerative diseases: an updated review. Front Cell Neurosci. 2023;17:1294420.


Google Scholar
 

Bartness TJ, Ryu V. Neural control of white, beige and brown adipocytes. Int J Obes Suppl. 2015;5(1):S35–9.


Google Scholar
 

Wang Y, Leung VH, Zhang Y, Nudell VS, Loud M, Servin-Vences MR, et al. The role of somatosensory innervation of adipose tissues. Nature. 2022;609(7927):569–74.


Google Scholar
 

Blaszkiewicz M, Willows JW, Johnson CP, Townsend KL. The importance of peripheral nerves in adipose tissue for the regulation of energy balance. Biology. 2019;8(1):10.


Google Scholar
 

Puente-Ruiz SC, Jais A. Reciprocal signaling between adipose tissue depots and the central nervous system. Front Cell Dev Biol. 2022;10:979251.


Google Scholar
 

Luo L, Liu M. Adipose tissue in control of metabolism. J Endocrinol. 2016;231(3):R77–99.


Google Scholar
 

Bartness TJ, Liu Y, Shrestha YB, Ryu V. Neural innervation of white adipose tissue and the control of lipolysis. Front Neuroendocrinol. 2014;35(4):473–93.


Google Scholar
 

Fan Y, Huang S, Li F, Zhang X, Huang X, Li W, et al. Generation of functional and mature sympathetic neurons from human pluripotent stem cells via a neuroepithelial route. J Mol Neurosci. 2024;74(1):19.


Google Scholar
 

Kuo LE, Kitlinska JB, Tilan JU, Li L, Baker SB, Johnson MD, et al. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat Med. 2007;13(7):803–11.


Google Scholar
 

Szalanczy AM, Key CCC, Woods LCS. Genetic variation in satiety signaling and hypothalamic inflammation: merging fields for the study of obesity. J Nutr Biochem. 2021;101:108928.


Google Scholar
 

Xiao Y, Liu D, Cline MA, Gilbert ER. Chronic stress, epigenetics, and adipose tissue metabolism in the obese state. Nutr Metab. 2020;17(1):88.


Google Scholar
 

Head GA, Lim K, Barzel B, Burke SL, Davern PJ. Central nervous system dysfunction in obesity-induced hypertension. Curr Hypertens Rep. 2014;16(9):466.


Google Scholar
 

do Carmo JM, da Silva AA, Wang Z, Fang T, Aberdein N, de Lara Rodriguez CEP, et al. Obesity-induced hypertension: brain signaling pathways. Curr Hypertens Rep. 2016;18(7):58.


Google Scholar
 

Guarino D, Nannipieri M, Iervasi G, Taddei S, Bruno RM. The role of the autonomic nervous system in the pathophysiology of obesity. Front Physiol. 2017;8:665.


Google Scholar
 

Chi J, Lin Z, Barr W, Crane A, Zhu XG, Cohen P. Early postnatal interactions between beige adipocytes and sympathetic neurites regulate innervation of subcutaneous fat. eLife. 2021;10:e64693.


Google Scholar
 

Huesing C, Qualls-Creekmore E, Lee N, François M, Torres H, Zhang R, et al. Sympathetic innervation of inguinal white adipose tissue in the mouse. J Comp Neurol. 2021;529(7):1465–85.


Google Scholar
 

Turtzo LC, Marx R, Lane MD. Cross-talk between sympathetic neurons and adipocytes in coculture. Proc Natl Acad Sci U S A. 2001;98(22):12385–90.


Google Scholar
 

Hagberg CE, Spalding KL. White adipocyte dysfunction and obesity-associated pathologies in humans. Nat Rev Mol Cell Biol. 2024;25(4):270–89.


Google Scholar
 

Vickers SP, Jackson HC, Cheetham SC. The utility of animal models to evaluate novel anti-obesity agents. Br J Pharmacol. 2011;164(4):1248–62.


Google Scholar
 

Börgeson E, Boucher J, Hagberg CE. Of mice and men: pinpointing species differences in adipose tissue biology. Front Cell Dev Biol. 2022;10:1003118.


Google Scholar
 

Kyllönen L, Haimi S, Mannerström B, Huhtala H, Rajala KM, Skottman H, et al. Effects of different serum conditions on osteogenic differentiation of human adipose stem cells in vitro. Stem Cell Res Ther. 2013;4(1):17.


Google Scholar
 

Ojala M, Prajapati C, Pölönen RP, Rajala K, Pekkanen-Mattila M, Rasku J, et al. Mutation-Specific phenotypes in hiPSC-Derived cardiomyocytes carrying either Myosin-Binding protein C or α-Tropomyosin mutation for hypertrophic cardiomyopathy. Stem Cells Int. 2016;2016(1):1684792.


Google Scholar
 

Hongisto H, Ilmarinen T, Vattulainen M, Mikhailova A, Skottman H. Xeno- and feeder-free differentiation of human pluripotent stem cells to two distinct ocular epithelial cell types using simple modifications of one method. Stem Cell Res Ther. 2017;8(1):291.


Google Scholar
 

Hyvärinen T, Hyysalo A, Kapucu FE, Aarnos L, Vinogradov A, Eglen SJ, et al. Functional characterization of human pluripotent stem cell-derived cortical networks differentiated on laminin-521 substrate: comparison to rat cortical cultures. Sci Rep. 2019;9(1):17125.


Google Scholar
 

Kapucu FE, Tujula I, Kulta O, Sukki L, Ryynänen T, Gram H, et al. Human tripartite cortical network model for Temporal assessment of alpha-synuclein aggregation and propagation in parkinson’s disease. Npj Park Dis. 2024;10(1):1–20.


Google Scholar
 

Isosaari L, Vuorenpää H, Yrjänäinen A, Kapucu FE, Kelloniemi M, Pakarinen TK, et al. Simultaneous induction of vasculature and neuronal network formation on a chip reveals a dynamic interrelationship between cell types. Cell Commun Signal. 2023;21(1):132.


Google Scholar
 

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82.


Google Scholar
 

Rogal J, Binder C, Kromidas E, Roosz J, Probst C, Schneider S, et al. WAT-on-a-chip integrating human mature white adipocytes for mechanistic research and pharmaceutical applications. Sci Rep. 2020;10(1):6666.


Google Scholar
 

Pieters VM, Rjaibi ST, Singh K, Li NT, Khan ST, Nunes SS, et al. A three-dimensional human adipocyte model of fatty acid-induced obesity. Biofabrication. 2022;14(4):045009.


Google Scholar
 

Schoonjans F, MedCalc. May. MedCalc’s Comparison of proportions calculator. https://www.medcalc.org/calc/comparison_of_proportions.php. Accessed 22 2025.

Zhang Y, Chen JW, Chen HY, Wang ZX, Li XD, Xu RX, et al. 3D bioprinted innervation ADMSC self-clustering culture model constructs for in vitro fat metabolism research: a preliminary study of ADMSC and neural progenitor cell co-culture model construct fabrication and characterization. Mater Today Chem. 2022;26:101092.


Google Scholar
 

Roxburgh J, Metcalfe AD, Martin YH. The effect of medium selection on adipose-derived stem cell expansion and differentiation: implications for application in regenerative medicine. Cytotechnology. 2016;68(4):957–67.


Google Scholar
 

Zebisch K, Voigt V, Wabitsch M, Brandsch M. Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Anal Biochem. 2012;425(1):88–90.


Google Scholar
 

Kim JY, Park EJ, Kim SM, Lee HJ. Optimization of adipogenic differentiation conditions for canine adipose-derived stem cells. J Vet Sci. 2021;22(4):e53.


Google Scholar
 

Hyväri L, Vanhatupa S, Halonen HT, Kääriäinen M, Miettinen S. Myocardin-related transcription factor A (MRTF-A) regulates the balance between adipogenesis and osteogenesis of human adipose stem cells. Stem Cells Int. 2020;2020(1):8853541.


Google Scholar
 

Park A, Kim WK, Bae KH. Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells. World J Stem Cells. 2014;6(1):33–42.


Google Scholar
 

Liu C, Huang K, Li G, Wang P, Liu C, Guo C, et al. Ascorbic acid promotes 3T3-L1 cells adipogenesis by attenuating ERK signaling to upregulate the collagen VI. Nutr Metab. 2017;14(1):79.


Google Scholar
 

Petersen RK, Madsen L, Pedersen LM, Hallenborg P, Hagland H, Viste K, et al. Cyclic AMP (cAMP)-mediated stimulation of adipocyte differentiation requires the synergistic action of Epac- and cAMP-dependent protein kinase-dependent processes. Mol Cell Biol. 2008;28(11):3804–16.


Google Scholar
 

Wu HF, Saito-Diaz K, Huang CW, McAlpine JL, Seo DE, Magruder DS, et al. Parasympathetic neurons derived from human pluripotent stem cells model human diseases and development. Cell Stem Cell. 2024;31(5):734-753.e8.


Google Scholar
 

Rosenberg SS, Spitzer NC. Calcium signaling in neuronal development. Cold Spring Harb Perspect Biol. 2011;3(10):a004259.


Google Scholar
 

Turovsky EA, Kaimachnikov NP, Turovskaya MV, Berezhnov AV, Dynnik VV, Zinchenko VP. Two mechanisms of calcium oscillations in adipocytes. Biochem Mosc Suppl Ser Membr Cell Biol. 2012;6(1):26–34.


Google Scholar
 

Johnson MA, Weick JP, Pearce RA, Zhang SC. Functional neural development from human embryonic stem cells: accelerated synaptic activity via astrocyte coculture. J Neurosci. 2007;27(12):3069–77.


Google Scholar
 

Osaki T, Sivathanu V, Kamm RD. Engineered 3D vascular and neuronal networks in a microfluidic platform. Sci Rep. 2018;8(1):5168.


Google Scholar
 

Turovsky EA, Turovskaya MV, Dynnik VV. Deregulation of Ca2+-signaling systems in white adipocytes, manifested as the loss of rhythmic activity, underlies the development of multiple hormonal resistance at obesity and type 2 diabetes. Int J Mol Sci. 2021;22(10):5109.


Google Scholar
 

Hatton IA, Galbraith ED, Merleau NSC, Miettinen TP, Smith BM, Shander JA. The human cell count and size distribution. Proc Natl Acad Sci USA. 2023;120(39):e2303077120.


Google Scholar
 

Torre EC, Bicer M, Cottrell GS, Widera D, Tamagnini F. Time-dependent reduction of calcium oscillations in adipose-derived stem cells differentiating towards adipogenic and osteogenic lineage. Biomolecules. 2021;11(10):1400.


Google Scholar
 

Rathouz MM, Vijayaraghavan S, Berg DK. Acetylcholine differentially affects intracellular calcium via nicotinic and muscarinic receptors on the same population of neurons ∗. J Biol Chem. 1995;270(24):14366–75.


Google Scholar
 

Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron. 2012;76(1):116–29.


Google Scholar
 

Nguyen P, Leray V, Diez M, Serisier S, Bloc’h JL, Siliart B, et al. Liver lipid metabolism. J Anim Physiol Anim Nutr. 2008;92(3):272–83.


Google Scholar
 

Louis F, Sowa Y, Kitano S, Matsusaki M. High-throughput drug screening models of mature adipose tissues which replicate the physiology of patients’ body mass index (BMI). Bioact Mater. 2022;7:227–41.


Google Scholar
 

Louis C, Van den Daelen C, Tinant G, Bourez S, Thomé JP, Donnay I, et al. Efficient in vitro adipocyte model of long-term lipolysis: A tool to study the behavior of lipophilic compounds. Vitro Cell Dev Biol – Anim. 2014;50(6):507–18.


Google Scholar
 

Halvorsen YD, Bond A, Sen A, Franklin DM, Lea-Currie YR, Sujkowski D, et al. Thiazolidinediones and glucocorticoids synergistically induce differentiation of human adipose tissue stromal cells: biochemical, cellular, and molecular analysis. Metabolism. 2001;50(4):407–13.


Google Scholar
 

Lang K, Ratke J. Leptin and adiponectin: new players in the field of tumor cell and leukocyte migration. Cell Commun Signal. 2009;7(1):27.


Google Scholar
 

da Silva Rosa SC, Liu M, Sweeney G. Adiponectin synthesis, secretion and extravasation from circulation to interstitial space. Physiology. 2021;36(3):134–49.


Google Scholar
 

Shavva VS, Tarnawski L, Liu T, Ahmed O, Olofsson PS. Cholinergic signaling in adipose tissue. Curr Opin Endocr Metab Res. 2024;37:100546.


Google Scholar
 

Fadel JR. Regulation of cortical acetylcholine release: insights from in vivo microdialysis studies. Behav Brain Res. 2011;221(2):527–36.


Google Scholar
 

El-Habta R, Kingham PJ, Backman LJ. Adipose stem cells enhance myoblast proliferation via acetylcholine and extracellular signal–regulated kinase 1/2 signaling. Muscle Nerve. 2018;57(2):305–11.


Google Scholar
 

Parimisetty A, Dorsemans AC, Awada R, Ravanan P, Diotel N, Lefebvre d’Hellencourt C. Secret talk between adipose tissue and central nervous system via secreted factors—an emerging frontier in the neurodegenerative research. J Neuroinflammation. 2016;13:67.


Google Scholar
Â