Roth, L. et al. Transient water vapor at Europa’s South Pole. Science 343, 171–174 (2014).

Article 
ADS 

Google Scholar
 

Porco, C. C. et al. Cassini observes the active South Pole of Enceladus. Science 311, 1393–1401 (2006).

Article 
ADS 

Google Scholar
 

Fagents, S. A., Lopes, R. M., Quick, L. C. & Gregg, T. K. in Planetary Volcanism across the Solar System (eds Gregg, T. K. P. et al) 161–234 (Elsevier, 2022).

Hussmann, H. & Spohn, T. Thermal-orbital evolution of Io and Europa. Icarus 171, 391–410 (2004).

Article 
ADS 

Google Scholar
 

Showman, A. P., Stevenson, D. J. & Malhotra, R. Coupled orbital and thermal evolution of Ganymede. Icarus 129, 367–383 (1997).

Article 
ADS 

Google Scholar
 

Tobie, G. et al. Tidal deformation and dissipation processes in icy worlds. Space Sci. Rev. 221, 6 (2025).

Article 
ADS 

Google Scholar
 

Moore, W. B. & Schubert, G. The tidal response of Europa. Icarus 147, 317–319 (2000).

Article 
ADS 

Google Scholar
 

Kamata, S., Matsuyama, I. & Nimmo, F. Tidal resonance in icy satellites with subsurface oceans. J. Geophys. Res. E 120, 1528–1542 (2015).

Article 
ADS 

Google Scholar
 

Manga, M. & Wang, C.-Y. Pressurized oceans and the eruption of liquid water on Europa and Enceladus. Geophys. Res. Lett. 34, L07202 (2007).

Article 
ADS 

Google Scholar
 

Beuthe, M. Spatial patterns of tidal heating. Icarus 223, 308–329 (2013).

Article 
ADS 

Google Scholar
 

Běhounková, M., Tobie, G., Choblet, G. & Čadek, O. Tidally-induced melting events as the origin of South-Pole activity on Enceladus. Icarus 219, 655–664 (2012).

Article 
ADS 

Google Scholar
 

Nimmo, F. Stresses generated in cooling viscoelastic ice shells: application to Europa. J. Geophys. Res. E 109, E12001 (2004).

Article 
ADS 

Google Scholar
 

Rudolph, M. L., Manga, M., Walker, M. & Rhoden, A. R. Cooling crusts create concomitant cryovolcanic cracks. Geophys. Res. Lett. 49, e2021GL094421 (2022).

Article 
ADS 

Google Scholar
 

Rhoden, A. R., Walker, M. E., Rudolph, M. L., Bland, M. T. & Manga, M. The evolution of a young ocean within Mimas. Earth Planet. Sci. Lett. 635, 118689 (2024).

Article 

Google Scholar
 

Rhoden, A. R., Rudolph, M. L. & Manga, M. The challenges of driving Charon’s cryovolcanism from a freezing ocean. Icarus 392, 115391 (2023).

Article 

Google Scholar
 

Tajeddine, R. et al. Constraints on Mimas’ interior from Cassini ISS libration measurements. Science 346, 322–324 (2014).

Article 
ADS 

Google Scholar
 

Lainey, V. et al. A recently formed ocean inside Saturn’s moon Mimas. Nature 626, 280–282 (2024).

Article 
ADS 

Google Scholar
 

Baillié, K., Noyelles, B., Lainey, V., Charnoz, S. & Tobie, G. Formation of the Cassini Division. I. Shaping the rings by Mimas inward migration. Mon. Not. R. Astron. Soc. 486, 2933–2946 (2019).

Article 
ADS 

Google Scholar
 

Noyelles, B., Baillié, K., Charnoz, S., Lainey, V. & Tobie, G. Formation of the Cassini Division. II. Possible histories of Mimas and Enceladus. Mon. Not. R. Astron. Soc. 486, 2947–2963 (2019).

Article 
ADS 

Google Scholar
 

Strom, C., Nordheim, T. A., Patthoff, D. A. & Fieber-Beyer, S. K. Constraining ocean and ice shell thickness on Miranda from surface geological structures and stress modeling. Planet. Sci. J. 5, 226 (2024).

Article 

Google Scholar
 

Hemingway, D. J. & Mittal, T. Enceladus’s ice shell structure as a window on internal heat production. Icarus 332, 111–131 (2019).

Article 
ADS 

Google Scholar
 

Fuller, J., Luan, J. & Quataert, E. Resonance locking as the source of rapid tidal migration in the Jupiter and Saturn moon systems. Mon. Not. R. Astron. Soc. 458, 3867–3879 (2016).

Article 
ADS 

Google Scholar
 

Tobie, G., Čadek, O. & Sotin, C. Solid tidal friction above a liquid water reservoir as the origin of the South Pole hotspot on Enceladus. Icarus 196, 642–652 (2008).

Article 
ADS 

Google Scholar
 

Meyer, J. & Wisdom, J. Tidal heating in Enceladus. Icarus 188, 535–539 (2007).

Article 
ADS 

Google Scholar
 

McKinnon, W. B. & Schenk, P. Is Mimas hollow? In Proc. AGU Fall Meeting P32A-05 (American Geophysical Union, 2024); https://agu.confex.com/agu/agu24/meetingapp.cgi/Paper/1707025

McKinnon, W. B. & Schenk, P. Is Mimas a Dyson satellite? The fate of small melting moons. In Proc. 56th Lunar Planetary Science Conference 2897 (USRA, 2025); https://www.hou.usra.edu/meetings/lpsc2025/pdf/2897.pdf

Hemingway, D. J., Rudolph, M. L. & Manga, M. Cascading parallel fractures on Enceladus. Nat. Astron. 4, 234–239 (2020).

Article 
ADS 

Google Scholar
 

Arakawa, M. & Maeno, N. Mechanical strength of polycrystalline ice under uniaxial compression. Cold Reg. Sci. Technol. 26, 215–229 (1997).

Article 

Google Scholar
 

Jones, S. J. The confined compressive strength of polycrystalline ice. J. Glaciol. 28, 171–178 (1982).

Article 
ADS 

Google Scholar
 

Schulson, E. M. Brittle failure of ice. Eng. Fract. Mech. 68, 1839–1887 (2001).

Article 

Google Scholar
 

Potter, R. S., Cammack, J. M., Braithwaite, C. H., Church, P. D. & Walley, S. M. A study of the compressive mechanical properties of defect-free, porous and sintered water-ice at low and high strain rates. Icarus 351, 113940 (2020).

Article 

Google Scholar
 

Schulson, E. M. & Renshaw, C. E. Fracture, friction, and permeability of ice. Annu. Rev. Earth Planet. Sci. 50, 323–343 (2022).

Article 
ADS 

Google Scholar
 

Cochrane, C. J., Vance, S. D., Castillo-Rogez, J. C., Styczinski, M. J. & Liuzzo, L. Stronger evidence of a subsurface ocean within Callisto from a multifrequency investigation of its induced magnetic field. AGU Adv. 6, e2024AV001237 (2025).

Article 
ADS 

Google Scholar
 

Nagel, K., Breuer, D. & Spohn, T. A model for the interior structure, evolution, and differentiation of Callisto. Icarus 169, 402–412 (2004).

Article 
ADS 

Google Scholar
 

Hillier, J. & Squyres, S. W. Thermal stress tectonics on the satellites of Saturn and Uranus. J. Geophys. Res. E 96, 15665–15674 (1991).

Article 
ADS 

Google Scholar
 

Hurford, T. A., Helfenstein, P., Hoppa, G. V., Greenberg, R. & Bills, B. G. Eruptions arising from tidally controlled periodic openings of rifts on Enceladus. Nature 447, 292–294 (2007).

Article 
ADS 

Google Scholar
 

Ingersoll, A. P. & Nakajima, M. Controlled boiling on Enceladus. 2. Model of the liquid-filled cracks. Icarus 272, 319–326 (2016).

Article 
ADS 

Google Scholar
 

Zhu, P., Manucharyan, G. E., Thompson, A. F., Goodman, J. C. & Vance, S. D. The influence of meridional ice transport on Europa’s ocean stratification and heat content. Geophys. Res. Lett. 44, 5969–5977 (2017).

Article 
ADS 

Google Scholar
 

Shibley, N. C. & Laughlin, G. Do oceanic convection and clathrate dissociation drive Europa’s geysers? Planet. Sci. J. 2, 221 (2021).

Article 

Google Scholar
 

Mitchell, K. L., Rabinovitch, J., Scamardella, J. C. & Cable, M. L. A proposed model for cryovolcanic activity on Enceladus driven by volatile exsolution. J. Geophys. Res. E 129, e2023JE007977 (2024).

Article 
ADS 

Google Scholar
 

Matson, D. L., Castillo-Rogez, J. C., Davies, A. G. & Johnson, T. V. Enceladus: a hypothesis for bringing both heat and chemicals to the surface. Icarus 221, 53–62 (2012).

Article 
ADS 

Google Scholar
 

Crawford, G. D. & Stevenson, D. J. Gas-driven water volcanism in the resurfacing of Europa. Icarus 73, 66–79 (1988).

Article 
ADS 

Google Scholar
 

Rudolph, M. L. & Manga, M. Fracture penetration in planetary ice shells. Icarus 199, 536–541 (2009).

Article 
ADS 

Google Scholar
 

Buffo, J. J., Meyer, C. R. & Parkinson, J. R. G. Dynamics of a solidifying icy satellite shell. J. Geophys. Res. E 126, e2020JE006741 (2021).

Article 
ADS 

Google Scholar
 

Buffo, J. J., Schmidt, B. E., Huber, C. & Meyer, C. R. Characterizing the ice-ocean interface of icy worlds: a theoretical approach. Icarus 360, 114318 (2021).

Article 

Google Scholar
 

Turcotte, D. L. & Schubert, G. Geodynamics 2nd edn (Cambridge Univ. Press, 2002).

Shoji, D., Hussmann, H., Sohl, F. & Kurita, K. Non-steady state tidal heating of Enceladus. Icarus 235, 75–85 (2014).

Article 
ADS 

Google Scholar
 

Goldreich, P., Lithwick, Y. & Luan, J. Enceladus’s limit cycle. Astrophys. J. 992, 28 (2025).

Article 
ADS 

Google Scholar
 

Greenberg, R. et al. in Uranus (eds Bergstralh, J. T. et al.) 693–735 (Univ. Arizona Press, 1991).

Pappalardo, R. T., Reynolds, S. J. & Greeley, R. Extensional tilt blocks on Miranda: evidence for an upwelling origin of Arden Corona. J. Geophys. Res. E 102, 13369–13379 (1997).

Article 
ADS 

Google Scholar
 

Hammond, N. P. & Barr, A. C. Global resurfacing of Uranus’s moon Miranda by convection. Geology 42, 931–934 (2014).

Article 
ADS 

Google Scholar
 

Tittemore, W. C. & Wisdom, J. Tidal evolution of the Uranian satellites. II. An explanation of the anomalously high orbital inclination of Miranda. Icarus 78, 63–89 (1989).

Article 
ADS 

Google Scholar
 

Croft, S. & Soderblom, L. in Uranus (eds Bergstralh, J. T. et al.) 561–628 (Univ. Arizona Press, 1991).

Hussmann, H., Sohl, F. & Spohn, T. Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-Neptunian objects. Icarus 185, 258–273 (2006).

Article 
ADS 

Google Scholar
 

Bierson, C. J. & Nimmo, F. A note on the possibility of subsurface oceans on the Uranian satellites. Icarus 373, 114776 (2022).

Article 

Google Scholar
 

Beddingfield, C. B., Leonard, E. J., Nordheim, T. A., Cartwright, R. J. & Castillo-Rogez, J. C. Titania’s heat fluxes revealed by Messina Chasmata. Planet. Sci. J. 4, 211 (2023).

Article 

Google Scholar
 

Porco, C. C. et al. Cassini imaging science: initial results on Phoebe and Iapetus. Science 307, 1237–1242 (2005).

Article 
ADS 

Google Scholar
 

Giese, B. et al. The topography of Iapetus’ leading side. Icarus 193, 359–371 (2008).

Article 
ADS 

Google Scholar
 

Ip, W.-H. On a ring origin of the equatorial ridge of Iapetus. Geophys. Res. Lett. https://doi.org/10.1029/2005GL025386 (2006).

Levison, H. F., Walsh, K. J., Barr, A. C. & Dones, L. Ridge formation and de-spinning of Iapetus via an impact-generated satellite. Icarus 214, 773–778 (2011).

Article 
ADS 

Google Scholar
 

Dombard, A. J., Cheng, A. F., McKinnon, W. B. & Kay, J. P. Delayed formation of the equatorial ridge on Iapetus from a subsatellite created in a giant impact. J. Geophys. Res. E https://doi.org/10.1029/2011JE004010 (2012).

Detelich, C. E., Byrne, P. K., Dombard, A. J. & Schenk, P. M. The morphology and age of the Iapetus equatorial ridge supports an exogenic origin. Icarus 367, 114559 (2021).

Article 

Google Scholar
 

Stickle, A. M. & Roberts, J. H. Modeling an exogenic origin for the equatorial ridge on Iapetus. Icarus 307, 197–206 (2018).

Article 
ADS 

Google Scholar
 

Sandwell, D. & Schubert, G. A contraction model for the flattening and equatorial ridge of Iapetus. Icarus 210, 817–822 (2010).

Article 
ADS 

Google Scholar
 

Ćuk, M. et al. Long-term evolution of the Saturnian system. Space Sci. Rev. 220, 20 (2024).

Article 
ADS 

Google Scholar
 

Castillo-Rogez, J. C. et al. Iapetus’ geophysics: rotation rate, shape, and equatorial ridge. Icarus 190, 179–202 (2007).

Article 
ADS 

Google Scholar
 

National Academies of Sciences, Engineering, and Medicine. Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 2023-2032 (National Academies Press, 2023).

Jaeger, J. C., Cook, N. G. & Zimmerman, R. Fundamentals of Rock Mechanics (Wiley, 2009).

Petrenko, V. F. & Whitworth, R. W. Physics of Ice (Oxford Univ. Press, 1999).


Google Scholar
 

Rudolph, M. & Rhoden, A. PISTES: planetary ice shell thermal evolution and stress. Zenodo https://doi.org/10.5281/zenodo.17317041 (2025).

Nimmo, F., Bierson, C. & McKinnon, W. B. Pluto and Triton: Interior Structures, Lithospheres and Potential for Oceans (IOP Publishing, 2025).