Argyle, L. P. et al. Leveraging AI for democratic discourse: chat interventions can improve online political conversations at scale. Proc. Natl Acad. Sci. USA 120, e2311627120 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Coeckelbergh, M. Why AI Undermines Democracy and What to Do About It (Polity, 2024).

Epstein, Z. et al. Art and the science of generative AI. Science 380, 1110–1111 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Jungherr, A. Artificial intelligence and democracy: a conceptual framework. Soc. Media Soc. https://doi.org/10.1177/20563051231186353 (2023).

Kreps, S. & Kriner, D. How AI threatens democracy. J. Democr. 34, 122–131 (2023).

Article 

Google Scholar
 

Summerfield, C. et al. The impact of advanced AI systems on democracy. Nat. Hum. Behav. https://doi.org/10.1038/s41562-025-02309-z (2025).

Kalla, J. L. & Broockman, D. E. The minimal persuasive effects of campaign contact in general elections: evidence from 49 field experiments. Am. Polit. Sci. Rev. 112, 148–166 (2018).

Article 

Google Scholar
 

Coppock, A., Hill, S. J. & Vavreck, L. The small effects of political advertising are small regardless of context, message, sender, or receiver: evidence from 59 real-time randomized experiments. Sci. Adv. 6, eabc4046 (2020).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Hewitt, L. How experiments help campaigns persuade voters: evidence from a large archive of campaigns’ own experiments. Am. Polit. Sci. Rev. 118, 2021–2039 (2024).

Article 

Google Scholar
 

Capraro, V. et al. The impact of generative artificial intelligence on socioeconomic inequalities and policy making. PNAS Nexus 3, pgae191 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hackenburg, K., Ibrahim, L., Tappin, B. M. & Tsakiris, M. Comparing the persuasiveness of role-playing large language models and human experts on polarized U.S. political issues. AI Soc. https://doi.org/10.1007/s00146-025-02464-x (2025).

Article 

Google Scholar
 

Hanley, H. W. A. & Durumeric, Z. Machine-made media: monitoring the mobilization of machine-generated articles on misinformation and mainstream news websites. In Proc. International AAAI Conference on Web and Social Media 542–556 (ICWSM, 2024).

Matz, S. C. et al. The potential of generative AI for personalized persuasion at scale. Sci Rep. 14, 4692 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hackenburg, K. et al. Scaling language model size yields diminishing returns for single-message political persuasion. Proc. Natl Acad. Sci. USA 122, e2413443122 (2025).

Simon, F. M., Altay, S. & Mercier, H. Misinformation reloaded? Fears about the impact of generative AI on misinformation are overblown. Harvard Kennedy School Misinformation Review https://misinforeview.hks.harvard.edu/article/misinformation-reloaded-fears-about-the-impact-of-generative-ai-on-misinformation-are-overblown/ (2023).

Kalla, J. L. & Broockman, D. E. Reducing exclusionary attitudes through interpersonal conversation: evidence from three field experiments. Am. Polit. Sci. Rev. 114, 410–425 (2020).

Article 

Google Scholar
 

Kalla, J. L. & Broockman, D. E. Which narrative strategies durably reduce prejudice? Evidence from field and survey experiments supporting the efficacy of perspective-getting. Am. J. Polit. Sci. 67, 185–204 (2023).

Article 

Google Scholar
 

Salvi, F., Horta Ribeiro, M., Gallotti, R. & West, R. On the conversational persuasiveness of GPT-4. Nat. Hum. Behav. 9, 1645–1653 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hackenburg, K. et al. The levers of political persuasion with conversational AI. Science https://doi.org/10.1126/science.aea3884 (2025).

Costello, T. H., Pennycook, G. & Rand, D. G. Durably reducing conspiracy beliefs through dialogues with AI. Science 385, eadq1814 (2024).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Costello, T. H., Pennycook, G. & Rand, D. Just the facts: how dialogues with AI reduce conspiracy beliefs. Preprint at https://osf.io/preprints/psyarxiv/h7n8u (2025).

Boissin, E., Costello, T. H., Spinoza-Martín, D., Rand, D. G. & Pennycook, G. Dialogues with large language models reduce conspiracy beliefs even when the AI is perceived as human. PNAS Nexus 4, pgaf325 (2025).

Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA 100, 9440–9445 (2003).

Article 
ADS 
MathSciNet 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Storey, J. D. A direct approach to false discovery rates. J. R. Statist. Soc. B 64, 479–498 (2002).

Article 
MathSciNet 

Google Scholar
 

Clifton, L. & Clifton, D. A. The correlation between baseline score and post-intervention score, and its implications for statistical analysis. Trials 20, 43 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Secretary of the Commonwealth of Massachusetts. The Natural Psychedelic Substances Act. The General Court of the Commonwealth of Massachusetts https://malegislature.gov/Bills/193/H4255.pdf (2024).

Tappin, B. M., Berinsky, A. J. & Rand, D. G. Partisans’ receptivity to persuasive messaging is undiminished by countervailing party leader cues. Nat. Hum. Behav. 7, 568–582 (2023).

Article 
PubMed 

Google Scholar
 

Wittenberg, C., Tappin, B. M., Berinsky, A. J. & Rand, D. G. The (minimal) persuasive advantage of political video over text. Proc. Natl Acad. Sci. USA 118, e2114388118 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Flynn, D. J., Nyhan, B. & Reifler, J. The nature and origins of misperceptions: understanding false and unsupported beliefs about politics. Polit. Psychol. 38, 127–150 (2017).

Article 

Google Scholar
 

Kahan, D. M. Ideology, motivated reasoning, and cognitive reflection: an experimental study. Judgm. Decis. Mak. 8, 407–424 (2013).

Article 

Google Scholar
 

Taber, C. S. & Lodge, M. Motivated skepticism in the evaluation of political beliefs. Am. J. Polit. Sci. 50, 755–769 (2006).

Article 

Google Scholar
 

Thaler, M. The fake news effect: experimentally identifying motivated reasoning using trust in news. Am. Econ. J. Microecon. 16, 1–38 (2024).

Article 

Google Scholar
 

Kubin, E., Puryear, C., Schein, C. & Gray, K. Personal experiences bridge moral and political divides better than facts. Proc. Natl Acad. Sci. USA 118, e2008389118 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bimber, B. & de Zúñiga, H. G. Social influence and political participation around the world. Eur. Political Sci. Rev. 14, 135–154 (2022).

Article 

Google Scholar
 

Cialdini, R. B. The science of persuasion. Sci. Am. 284, 76–81 (2001).

Article 

Google Scholar
 

Cohen, G. L. Party over policy: the dominating impact of group influence on political beliefs. J. Pers. Soc. Psychol. 85, 808–822 (2003).

Article 
ADS 
PubMed 

Google Scholar
 

Green, M. C. & Brock, T. C. The role of transportation in the persuasiveness of public narratives. J. Pers. Soc. Psychol. 79, 701–721 (2000).

Article 
CAS 
PubMed 

Google Scholar
 

Lau, R. R. & Rovner, I. B. Negative campaigning. Annu. Rev. Polit. Sci. 12, 285–306 (2009).

Article 

Google Scholar
 

Galasso, V., Nannicini, T. & Nunnari, S. Positive spillovers from negative campaigning. Am. J. Polit. Sci. 67, 5–21 (2023).

Article 

Google Scholar
 

Riet, J. V., Schaap, G. & Kleemans, M. Fret not thyself: the persuasive effect of anger expression and the role of perceived appropriateness. Motiv. Emotion 42, 103–117 (2017).

Article 

Google Scholar
 

Walter, N., Tukachinsky, R., Pelled, A. & Nabi, R. Meta-analysis of anger and persuasion: an empirical integration of four models. J. Commun. 69, 73–93 (2019).

Article 

Google Scholar
 

Petty, R. E. & Cacioppo, J. T. Communication and Persuasion (Springer, 1986)

Pennycook, G. A. A framework for understanding reasoning errors: from fake news to climate change and beyond. Adv. Exp. Soc. Psychol. 67, 131–208 (2023).

Article 

Google Scholar
 

Feinberg, M. & Willer, R. The moral roots of environmental attitudes. Psychol. Sci. 24, 56–62 (2013).

Article 
PubMed 

Google Scholar
 

Cacioppo, J. T., Petty, R. E. & Kao, C. F. Central and peripheral routes to persuasion: an individual difference perspective. J. Pers. Soc. Psychol. 51, 1032–1043 (1986).

Article 

Google Scholar
 

Wheeler, S. C., Petty, R. E. & Bizer, G. Y. Self-schema matching and attitude change: situational and dispositional determinants of message elaboration. J. Consum. Res. 31, 787–797 (2005).

Article 

Google Scholar
 

Argyle, L. P. et al. Testing theories of political persuasion using AI. Proc. Natl Acad. Sci. USA 122, e2412815122 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Garrett, R. K. & Bond, R. M. Conservatives’ susceptibility to political misperceptions. Sci. Adv. 7, eabf1234 (2021).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

González-Bailón, S. et al. Asymmetric ideological segregation in exposure to political news on Facebook. Science 381, 392–398 (2023).

Article 
ADS 
PubMed 

Google Scholar
 

Guess, A., Nagler, J. & Tucker, J. Less than you think: prevalence and predictors of fake news dissemination on Facebook. Sci. Adv. 5, eaau4586 (2019).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Lasser, J. et al. Social media sharing of low-quality news sources by political elites. PNAS Nexus 1, pgac186 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lasser, J. et al. From alternative conceptions of honesty to alternative facts in communications by US politicians. Nat. Hum. Behav. 7, 2140–2151 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mosleh, M., Yang, Q., Zaman, T., Pennycook, G. & Rand, D. G. Differences in misinformation sharing can lead to politically asymmetric sanctions. Nature 634, 609–616 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Renault, T., Mosleh, M. & Rand, D. Republicans are flagged more often than Democrats for sharing misinformation on X’s Community Notes. Proc. Natl Acad. Sci. USA 122, e2502053122 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mummolo, J. & Peterson, E. Demand effects in survey experiments: an empirical assessment. Am. Polit. Sci. Rev. 113, 517–529 (2019).

Article 

Google Scholar
 

Friedman, J. H., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Soft. 33, 1–22 (2010).

Article 

Google Scholar
 

Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B 58, 267–288 (1996).

Article 
MathSciNet 

Google Scholar
 

Lin, H. Replication data for political persuasion using human-AI dialogues. Harvard Dataverse https://doi.org/10.7910/DVN/DODEXZ (2025).