Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).

PubMed 

Google Scholar
 

Harvey, J. A. et al. Scientists’ warning on climate change and insects. Ecol. Monogr. 93, e1553 (2023).


Google Scholar
 

Müller, J. et al. Weather explains the decline and rise of insect biomass over 34 years. Nature 628, 349–354 (2024).

ADS 
PubMed 

Google Scholar
 

Stork, N. E. How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 63, 31–45 (2018).

PubMed 

Google Scholar
 

Stork, N. E., Boyle, M. J. W., Wardhaugh, C. & Beaver, R. A. What can an analysis of Australian tropical rainforest bark beetles suggest about the missing millions of Earth’s insect species? Insect Conserv. Divers. 17, 1156–1166 (2024).


Google Scholar
 

Ewers, R. M. et al. Logging cuts the functional importance of invertebrates in tropical rainforest. Nat. Commun. 6, 6836 (2015).

ADS 
PubMed 

Google Scholar
 

Ashton, L. A. et al. Termites mitigate the effects of drought in tropical rainforest. Science 363, 174–177 (2019).

ADS 
PubMed 

Google Scholar
 

van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).

ADS 
PubMed 

Google Scholar
 

van Klink, R. et al. Disproportionate declines of formerly abundant species underlie insect loss. Nature 628, 359–364 (2024).

ADS 
PubMed 

Google Scholar
 

Wang, B. et al. Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proc. Natl Acad. Sci. USA 116, 22512–22517 (2019).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).

ADS 

Google Scholar
 

Cai, W. et al. Anthropogenic impacts on twentieth-century ENSO variability changes. Nat. Rev. Earth Environ. 4, 407–418 (2023).

ADS 

Google Scholar
 

Boyle, M. J. W. et al. Causes and consequences of insect decline in tropical forests. Nat. Rev. Biodivers. 1, 315–331 (2025).


Google Scholar
 

Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

PubMed 
PubMed Central 

Google Scholar
 

Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).

ADS 
PubMed 

Google Scholar
 

Saunders, M. E., Janes, J. K. & O’Hanlon, J. C. Moving on from the insect apocalypse narrative: engaging with evidence-based insect conservation. BioScience 70, 80–89 (2020).


Google Scholar
 

Schowalter, T. D., Pandey, M., Presley, S. J., Willig, M. R. & Zimmerman, J. K. Arthropods are not declining but are responsive to disturbance in the Luquillo Experimental Forest, Puerto Rico. Proc. Natl Acad. Sci. USA 118, e2002556117 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Forrest, J. R. Complex responses of insect phenology to climate change. Curr. Opin. Insect Sci. 17, 49–54 (2016).

PubMed 

Google Scholar
 

Huang, B. et al. Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).

ADS 

Google Scholar
 

Yeh, S.-W. et al. ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys. 56, 185–206 (2018).

ADS 

Google Scholar
 

Timmermann, A. et al. El Niño–Southern Oscillation complexity. Nature 559, 535–545 (2018).

ADS 
PubMed 

Google Scholar
 

Capotondi, A., Wittenberg, A. T., Kug, J.-S., Takahashi, K. & McPhaden, M. J. in El Niño Southern Oscillation in a Changing Climate (eds McPhaden, M. J., Santoso, A. & Cai, W.) 65–86 (American Geophysical Union, 2020).

Vencl, F. V. & Srygley, R. B. El Niño oscillations impact anti-predator defences to alter survival of an herbivorous beetle in a neotropical wet forest. J. Trop. Ecol. 39, e34 (2023).


Google Scholar
 

França, F. M. et al. El Niño impacts on human-modified tropical forests: consequences for dung beetle diversity and associated ecological processes. Biotropica 52, 252–262 (2020).


Google Scholar
 

Roubik, D. W. Ups and downs in pollinator populations: When is there a decline?. Conserv. Ecol. 5, 2 (2001).


Google Scholar
 

Richardson, B. A. The bromeliad microcosm and the assessment of faunal diversity in a neotropical forest. Biotropica 31, 321–336 (1999).


Google Scholar
 

Schowalter, T. D. & Ganio, L. M. Invertebrate communities in a tropical rain forest canopy in Puerto Rico following Hurricane Hugo. Ecol. Entomol. 24, 191–201 (2001).


Google Scholar
 

Basset, Y. et al. Abundance, occurrence and time series: long-term monitoring of social insects in a tropical rainforest. Ecol. Indic. 150, 110243 (2023).


Google Scholar
 

Wagner, D. L., Fox, R., Salcido, D. M. & Dyer, L. A. A window to the world of global insect declines: Moth biodiversity trends are complex and heterogeneous. Proc. Natl Acad. Sci. USA 118, e2002549117 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Luk, C.-L., Basset, Y., Kongnoo, P., Hau, B. C. H. & Bonebrake, T. C. Inter-annual monitoring improves diversity estimation of tropical butterfly assemblages. Biotropica 51, 519–528 (2019).


Google Scholar
 

Roubik, D. W. et al. Long-term (1979–2019) dynamics of protected orchid bees in Panama. Conserv. Sci. Pract. 3, e543 (2021).


Google Scholar
 

Bonebrake, T. C. et al. Warming threat compounds habitat degradation impacts on a tropical butterfly community in Vietnam. Glob. Ecol. Conserv. 8, 203–211 (2016).


Google Scholar
 

Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 88, 2427–2439 (2007).

PubMed 

Google Scholar
 

Sánchez González, I. et al. Niche specialization and community niche space increase with species richness in filter-feeder assemblages. Ecosphere 14, e4495 (2023).


Google Scholar
 

Fox, B. J. Niche parameters and species richness. Ecology 62, 1415–1425 (1981).


Google Scholar
 

Cleary, D. F. R. An examination of scale of assessment, logging and ENSO-induced fires on butterfly diversity in Borneo. Oecologia 135, 313–321 (2003).

ADS 
PubMed 

Google Scholar
 

Detto, M., Wright, S. J., Calderón, O. & Muller-Landau, H. C. Resource acquisition and reproductive strategies of tropical forest in response to the El Niño–Southern Oscillation. Nat. Commun. 9, 913 (2018).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Petráková, L. et al. Discovery of a monophagous true predator, a specialist termite-eating spider (Araneae: Ammoxenidae). Sci. Rep. 5, 14013 (2015).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Yin, Z.-W., Cai, C.-Y., Huang, D.-Y. & Li, L.-Z. Specialized adaptations for springtail predation in Mesozoic beetles. Sci. Rep. 7, 98 (2017).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Forbes, A. A., Bagley, R. K., Beer, M. A., Hippee, A. C. & Widmayer, H. A. Quantifying the unquantifiable: why Hymenoptera, not Coleoptera, is the most speciose animal order. BMC Ecol. 18, 21 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Tsang, T. P. N., Ponisio, L. C. & Bonebrake, T. C. Increasing synchrony opposes stabilizing effects of species richness on terrestrial communities. Divers. Distrib. 29, 849–861 (2023).


Google Scholar
 

Dell, A. I., Pawar, S. & Savage, V. M. Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy. J. Anim. Ecol. 83, 70–84 (2014).

PubMed 

Google Scholar
 

Staab, M. et al. Insect decline in forests depends on species’ traits and may be mitigated by management. Commun. Biol. 6, 338 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Prather, C. M. & Belovsky, G. E. Herbivore and detritivore effects on rainforest plant production are altered by disturbance. Ecol. Evol. 9, 7652–7659 (2019).

PubMed 
PubMed Central 

Google Scholar
 

Coley, P. D. & Barone, J. A. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Systemat. 27, 305–335 (1996).


Google Scholar
 

Boulton, C. A., Lenton, T. M. & Boers, N. Pronounced loss of Amazon rainforest resilience since the early 2000s. Nat. Clim. Change 12, 271–278 (2022).

ADS 

Google Scholar
 

Gómez-Zurita, J., Hunt, T., Kopliku, F. & Vogler, A. P. Recalibrated tree of leaf beetles (Chrysomelidae) indicates independent diversification of angiosperms and their insect herbivores. PLoS ONE 2, e360 (2007).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Lancaster, L. T. Host use diversification during range shifts shapes global variation in Lepidopteran dietary breadth. Nat. Ecol. Evol. 4, 963–969 (2020).

PubMed 

Google Scholar
 

Forister, M. L. et al. The global distribution of diet breadth in insect herbivores. Proc. Natl Acad. Sci. USA 112, 442–447 (2015).

ADS 
PubMed 

Google Scholar
 

Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).

ADS 
PubMed 

Google Scholar
 

Outhwaite, C. L., McCann, P. & Newbold, T. Agriculture and climate change are reshaping insect biodiversity worldwide. Nature 605, 97–102 (2022).

ADS 
PubMed 

Google Scholar
 

Boyle, M. J. W. et al. Tropical beetles more sensitive to impacts are less likely to be known to science. Curr. Biol. 34, R770–R771 (2024).

PubMed 

Google Scholar
 

Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).

ADS 
PubMed 

Google Scholar
 

Eppley, T. M. et al. Tropical field stations yield high conservation return on investment. Conserv. Lett. 60, e13007 (2024).


Google Scholar
 

Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).


Google Scholar
 

Olson, J. S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44, 322–331 (1963).


Google Scholar
 

van Groenigen, K. J., Osenberg, C. W. & Hungate, B. A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 475, 214–216 (2011).

ADS 
PubMed 

Google Scholar
 

R Core Team. R: A Language and Environment for Statistical Computing http://www.R-project.org/ (R Foundation for Statistical Computing, 2023).

Oksanen, J. et al. Vegan: community ecology package (2022).

Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, 2017).

Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686 (2004).

MathSciNet 

Google Scholar
 

Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).

Bailey, P. & Emad, A. wCorr: Weighted correlations cran.r-project.org/web/packages/wCorr/index.html (2023).

Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

Wilke, C. & Wiernik, B. ggtext: Improved text rendering support for ‘ggplot2’ cran.r-project.org/web/packages/ggtext/index.html (2022).

Wilke, C. cowplot: Streamlined plot theme and plot annotations for ‘ggplot2’ cran.r-project.org/web/packages/cowplot/index.html (2024).

Simpson, G. gratia: Graceful ggplot-based graphics and other functions for GAMs fitted using mgcv cran.r-project.org/web/packages/gratia/index.html (2024).

Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. B 65, 95–114 (2003).

MathSciNet 

Google Scholar
 

Box G. E. P., Jenkins, G. M. & Reinsel, G. C. Time Series Analysis: Forecasting and Control (Holden-Day, 1994).

Jones, R. H. Longitudinal Data with Serial Correlation: A State-Space Approach (Chapman and Hall, 1993).

Dunn, P. K. & Smyth, G. K. Series evaluation of Tweedie exponential dispersion model densities. Stat. Comput. 15, 267–280 (2005).

MathSciNet 

Google Scholar
 

Wootton, K. L. & Stouffer, D. B. Species’ traits and food-web complexity interactively affect a food web’s response to press disturbance. Ecosphere 7, e01518 (2016).


Google Scholar
 

Mally, R. et al. Historical invasion rates vary among insect trophic groups. Curr. Biol. 34, 5374–5381.e3 (2024).

PubMed 

Google Scholar
 

GBIF.Org user. Occurrence download 29229815. The Global Biodiversity Information Facility https://doi.org/10.15468/DL.6C2QQG (2025).

GBIF.Org user. Occurrence download 2557474. The Global Biodiversity Information Facility https://doi.org/10.15468/DL.R6MNY5 (2025).

GBIF.Org user. Occurrence download 241682722. The Global Biodiversity Information Facility https://doi.org/10.15468/DL.5KF5NR (2025).

GBIF.Org user. Occurrence download 305626069. The Global Biodiversity Information Facility https://doi.org/10.15468/DL.JPEWKC (2025).

GBIF.Org user. Occurrence download 66151475. The Global Biodiversity Information Facility https://doi.org/10.15468/DL.4S7VFE (2025).

GBIF.Org user. Occurrence download 207807231. The Global Biodiversity Information Facility https://doi.org/10.15468/DL.4E6SKK (2025).

GBIF.Org user. Occurrence download 379594148. The Global Biodiversity Information Facility https://doi.org/10.15468/DL.2TP7Y3 (2025).

Sharp, A. C. et al. Compiled datasets for “Stronger El Niños reduce tropical forest arthropod diversity and function” [Data set]. Zenodo https://doi.org/10.5281/zenodo.14863367 (2025).

Sharp, A. C. dradamsharp/Stronger-El-Ninos-reduce-tropical-forest-arthropod-diversity-and-function: analysis for ‘Stronger El Niños reduce tropical forest arthropod diversity and function’ (Release). Zenodo https://doi.org/10.5281/zenodo.15428849 (2025).