Dutta, P. K. et al. IoT revolutionizes humidity measurement and management in smart cities to enhance health and wellness. Mesopotamian J. Artif. Intell. Healthc., 110–117 (2024).
Ku, C. A. & Chung, C. K. Advances in humidity nanosensors and their application. Sensors 23 (4), 2328 (2023).
Hwang, J., Shin, C. & Yoe, H. Study on an agricultural environment monitoring server system using wireless sensor networks. Sensors 10 (12), 11189–11211 (2010).
Jarmuz, P., Barrett, C. B. & Sakkas, D. Continual temperature and humidity measurement allows more efficient and accurate monitoring of incubator performance. Fertil. Steril. 102 (3), e133–e134 (2014).
Sajid, M., Khattak, Z. J., Rahman, K., Hassan, G. & Choi, K. H. Progress and future of relative humidity sensors: A review from materials perspective. Bull. Mater. Sci. 45 (4), 238 (2022).
Nunes, D. et al. Metal oxide nanostructures for sensor applications. Semicond. Sci. Technol. 34 (4), 043001 (2019).
Qian, J. et al. Humidity sensing using polymers: A critical review of current technologies and emerging trends. Chemosensors 12 (11), 230 (2024).
Gu, X. et al. A comprehensive review on Preparation and humidity sensing applications of metal-halide perovskites. Mater. Sci. Eng. B. 311, 117834 (2025).
Abdelnour, R., Bakr, M. & Ali, G. A. Z.H. and Advanced nanomaterials for humidity sensing. In Handbook of Nanosensors. Materials and Technological Applications (575–601). (Springer, 2024).
Kumar, A. et al. SnO. Nanostructured thin film as humidity sens. Its application breath Monit. Ceram. Int. 49 (15), 24911–24921 (2023).
Ponte, R., Rauwel, E. & Rauwel, P. Surface-defect tailoring in SnO2 (CNT) nanomaterials via sol-gel routes and its influence on the cycling stability. J. Mater. Sci., pp. 1–20. (2024).
Kwon, N. & Seo, J. Functionalized polymer-capped SnO2 nanoparticle electron transport layer for efficient perovskite solar cells. Korean J. Chem. Eng., pp. 1–10. (2024).
Bao, Y., Wang, T., Kang, Q., Shi, C. & Ma, J. Micelle-template synthesis of Hollow silica spheres for improving water vapor permeability of waterborne polyurethane membrane. Sci. Rep. 7 (1), 46638 (2017).
Bhuvaneswari, K., Pazhanivel, T., Palanisamy, G. & Bharathi, G. CTAB-aided surface-modified Tin oxide nanoparticles as an enhanced photocatalyst for water treatment. J. Mater. Sci. Mater. Electron. 31, 6618–6628 (2020).
Shao, T. et al. Study on the photocatalytic properties of flower-shaped SnO. Nanomaterials 12 (19), 3419 (2022).
Prayoga, A., Iqbal, M. & Saputro, A. G. CTAB-assisted hydrothermal method for tin oxide preparation as an active materials for ethylene gas detection. J. Phys. 2705 (1), 012001 (2024).
Seekaew, Y., Chin, S. X. & Wongchoosuk, C. Flexible humidity sensor by p-type Co. Nano-Struct. Nano-Objects. 38, 101157 (2024).
Yu, S., Li, P., Ding, H. & Ma, X. Construction of high-performance g-C. Heterojunction humidity sens. Invest. Its application sens. Actuators B Chem. 419, 136392 (2024).
Wang, C. et al. A zno/porous GaN heterojunction and its application as a humidity sensor. Nanoscale Adv. 1 (3), 1232–1239 (2019).
Huang, L. et al. Low-temperature growing anatase TiO multi-dimensional Heterojunctions MXene Conductive Netw high-efficient Perovskite Solar Cells. Nano-micro Lett. 12, 1–19 (2020).
Lee, J., Kim, H., Hilal, M. & Cai, Z. Core-shell SnO. J. Mater. Sci. Mater. Electron. 35 (20), 1421 (2024).
Ozel, K. & Yildiz, A. Estimation of maximum photoresponsivity of n-SnO2/p‐Si heterojunction‐based UV photodetectors. Phys. Status Solidi (RRL)–Rapid Res. Lett., 16, 2, 2100490. (2022).
Serin, T., Yildiz, A. & Serin, N. Electrical properties of polycrystalline SnO. Thin Films Appl. Phys. Express. 4 (12), 121101 (2011).
Ozel, K. & Yildiz, A. The potential barrier-dependent carrier transport mechanism in n-SnO. Sens. Actuators A Phys. 332, 113141 (2021).
Li, S. et al. Self-powered blue-sensitive photodetector based on PEDOT: pss/sno microwires organic/inorganic p-n heterojunction. Appl. Phys. A. 119, 1561–1566 (2015).
Ragab, H. M. et al. High-performance NO2 sensing with SnO2/rGO/PEDOT composite for advanced pollution control applications. Inorgan. Chem. Commun., 114133. (2025).
Kornienko, V. V. et al. Machine learning for optical gas sensing: A leaky-mode humidity sensor as example. IEEE Sens. J. 20 (13), 6954–6963 (2020).
Rodić, L. D., Županović, T., Perković, T., Šolić, P. & Rodrigues, J. J. Machine learning and soil humidity sensing: Signal strength approach. ACM Trans. Internet Technol. (TOIT). 22 (2), 1–21 (2021).
Zhao, Y. et al. Gas-sensing enhancement methods for hydrothermal synthesized SnO. Nanotechnology 28 (45), 452002 (2017).
Xu, X. et al. Highly sensitive VOCs-acetone device based on Ag-decorated SnO hollow nanofibers. J. Alloys Compd. 703, 572–579 (2017).
Suvith, V. S., Devu, V. S. & Philip, D. Facile synthesis of SnO. Struct. Magn. Catalytic Prop. Ceram. Int. 46 (1), 786–794 (2020).
Jayaram, P., Pradyumnan, P. P. & Karazhanov, S. Z. Micro-strain, dislocation density and surface chemical state analysis of multication thin films. Phys. B Condens. Matter. 501, 140–145 (2016).
John, K. I. et al. Unravelling the effect of crystal dislocation density and microstrain of titanium dioxide nanoparticles on Tetracycline removal performance. Chem. Phys. Lett. 776, 138725 (2021).
Ren, H., Zhao, W., Wang, L., Ryu, S. O. & Gu, C. Preparation of porous flower-like SnO micro/nano structures their enhanced gas sens property. . J. Alloys Compd. 653, 611–618 (2015).
Wang, S., Zhu, Y., Liu, B., Wang, C. & Ma, R. Introduction of carbon nanodots into SnO electron transport layer for efficient and UV stable planar perovskite solar cells. J. Mater. Chem. A. 7 (10), 5353–5362 (2019).
Savarimuthu, K., Rajamanickam, G., Shankararajan, R., Perumal, R. & Rayarfrancis, A. Experimental study on flexible ZnO based nanogenerator using Schottky contact for energy harvesting applications. IEEE Trans. Nanotechnol. 16 (3), 469–476 (2017).
Saleh, S. M. ZnO nanospheres based simple hydrothermal route for photocatalytic degradation of Azo dye. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 211, 141–147 (2019).
da Silva, G. T. et al. Long-and short-range structure of SnO2 nanoparticles: Synthesis photo (electro) catalytic activity. Mater. Chem. Phys. 305, 127989 (2023).
Yoo, K. P. et al. Novel resistive-type humidity sensor based on multiwall carbon nanotube/polyimide composite films. Sens. Actuators B. 145 (1), 120–125 (2010).
Zhang, H., Zhang, H., Man, J. & Chen, C. Preparation of high performance Fe-doped SnO2 humidity sensor and its application in respiration detection. Sens. Actuators A Phys. 362, 114644 (2023).
Pan, S. et al. A sensitive humidity sensor at low pressure with SnO2 QDs. Sens. Actuators A Phys. 346, 113835 (2022).
Wang, G. et al. Fast-response humidity sensor based on laser printing for respiration monitoring. RSC Adv. 10 (15), 8910–8916 (2020).
Khasim, S. et al. PVA treated PEDOT-PSS: TiO2 nanocomposite based high-performance sensors towards detection of relative humidity and soil moisture content for agricultural applications. J. Polym. Environ. 29, 612–623 (2021).
Laera, A. M., Cassano, G., Burresi, E., Protopapa, M. L. & Penza, M. Flexible humidity sensor based on chemically reduced graphene oxide. Chemosensors 12 (12), 245 (2024).
Li, J., Wen, S., Yao, Y., Li, W. & Ling, W. Investigating the impact of crystal face on SnO2/GO-A humidity sensor via adsorption kinetics and DFT calculations. J. Alloys Compd. 1010, 177530 (2025).
Blessi, S., Manikandan, A., Anand, S., Sonia, M. M. L., Vinosel, V. M., Alosaimi, A. M., Khan, A., Hussein, M. A. & Asiri, A. M. et al. Enhanced electrochemical performance and humidity sensing properties of Al3+ substituted mesoporous SnO2 nanoparticles. Phys. E Low-Dimens. Syst. Nanostruct. 133, 114820 (2021).
Bauskar, D., Kale, B. B. & Patil, P. Synthesis and humidity sensing properties of ZnSnO3 cubic crystallites. Sens. Actuators B Chem. 161 (1), 396–400 (2012).
Begum, S. & Ahmaruzzaman, M. CTAB and SDS assisted facile fabrication of SnO2 nanoparticles for effective degradation of carbamazepine from aqueous phase: A systematic and comparative study of their degradation performance. Water Res. 129, 470–485 (2018).
Yao, X. & Cui, Y. A PEDOT: PSS functionalized capacitive sensor for humidity. Measurement 160, 107782 (2020).
Xie, X. J., Si, R. J., Zheng, J., Wei, K., Zheng, X. Y., Chen, C. & Wang, C. C. et al. Synthesis of ZnO/NiO hollow spheres and their humidity sensing performance. J. Alloys Compd. 879, 160487 (2021).
Zhang, H., Zhang, H., Jia, Z., Chen, C., Yang, C., Dou, Q., Li, X., Ma, X. & Ding, P. et al. Design of humidity sensor based on poly (sodium 4-styrenesulfonate) modified SnO2 for visual monitoring of plant growth environments. Available at SSRN 5115033.
Xia, J., Wang, X., Wang, X., Majer-Baranyi, K. & Zhang, X. Hysteresis dynamic modeling and analysis of flexible nano silver–polyvinyl alcohol humidity sensor based on the microscopic process and Langmuir-Fick theory. ACS Omega. 7 (17), 14994–15004 (2022).
Potharaju, S., Tirandasu, R. K., Tambe, S. N., Jadhav, D. B., Kumar, D. A. & Amiripalli, S. S. et al. A Two-Step machine learning approach for predictive maintenance and anomaly detection in environmental sensor systems. MethodsX, 103181. (2025).
Naser, M. Z. & Alavi, A. H. Error metrics and performance fitness indicators for artificial intelligence and machine learning in engineering and sciences. Archit. Struct. Constr. 3 (4), 499–517 (2023).
Hassan, S. U., Ahamed, J. & Ahmad, K. Analytics of machine learning-based algorithms for text classification. Sustain. Oper. Comput. 3, 238–248 (2022).