Mahmudi, H. et al. Tumor microenvironment penetrating chitosan nanoparticles for elimination of cancer relapse and minimal residual disease. Front. Oncol. 12, 1054029 (2022).
Nejati-Koshki, K. et al. Inhibition of leptin gene expression and secretion by silibinin: Possible role of estrogen receptors. Cytotechnology 64(6), 719–726 (2012).
Huang, Z., Yu, P. & Tang, J. Characterization of triple-negative breast cancer MDA-MB-231 cell spheroid model. OncoTargets Ther. 13, 5395–5405 (2020).
Mazloomi, M. et al. Advanced drug delivery platforms target cancer stem cells. Asian J. Pharm. Sci. 20(3), 101036 (2025).
Karimi, S. et al. For and against tumor microenvironment: Nanoparticle-based strategies for active cancer therapy. Mater. Today Bio 31, 101626 (2025).
Semenza, G. L. Oxygen sensing, homeostasis, and disease. N. Engl. J. Med. 365(6), 537–547 (2011).
Semenza, G. L. Hypoxia-inducible factors: Mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. Sci. 33(4), 207–214 (2012).
Riffle, S., Pandey, R. N., Albert, M. & Hegde, R. S. Linking hypoxia, DNA damage and proliferation in multicellular tumor spheroids. BMC Cancer 17, 1–12 (2017).
Jahanban-Esfahlan, R., Seidi, K. & Zarghami, N. Tumor vascular infarction: Prospects and challenges. Int. J. Hematol. 105(3), 244–256 (2017).
Azizi, M. et al. Multifunctional nanostructures: Intelligent design to overcome biological barriers. Mater. Today Bio 20, 100672 (2023).
Shahpouri, M. et al. Prospects for hypoxia-based drug delivery platforms for the elimination of advanced metastatic tumors: From 3D modeling to clinical concepts. J. Control. Release 353, 1002–1022 (2023).
Siim, B. G., Menke, D. R., Dorie, M. J. & Brown, J. M. Tirapazamine-induced cytotoxicity and DNA damage in transplanted tumors: Relationship to tumor hypoxia. Can. Res. 57(14), 2922–2928 (1997).
Hong, B. et al. Chan AT-C: Hypoxia-targeting by tirapazamine (TPZ) induces preferential growth inhibition of nasopharyngeal carcinoma cells with Chk1/2 activation. Invest. New Drugs 29, 401–410 (2011).
Kitchen, D. B., Decornez, H., Furr, J. R. & Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov. 3(11), 935–949 (2004).
Lu, H. et al. Recent advances in the development of protein-protein interactions modulators: Mechanisms and clinical trials. Signal Transduct. Target Ther. 5(1), 213 (2020).
Salemi, A., Pourseif, M. M. & Omidi, Y. Next-generation vaccines and the impacts of state-of-the-art in-silico technologies. Biologicals 69, 83–85 (2021).
Tang, J. & Aittokallio, T. Network pharmacology strategies toward multi-target anticancer therapies: From computational models to experimental design principles. Curr. Pharm. Des. 20(1), 23–36 (2014).
Dianat-Moghadam, H. et al. Cancer stem cells-emanated therapy resistance: Implications for liposomal drug delivery systems. J. Control. Release 288, 62–83 (2018).
Hashemi, Z. et al. Engineered niosomes for cancer therapy: Classification, synthesis, and clinical applications. BioNanoScience 15(1), 34 (2024).
Pourbakhsh, M., Jabraili, M., Akbari, M., Jaymand, M. & Jahanban Esfahlan, R. Poloxamer-based drug delivery systems: Frontiers for treatment of solid tumors. Mater. Today Bio 32, 101727 (2025).
Massoumi, B. et al. A novel multi-stimuli-responsive theranostic nanomedicine based on Fe3O4@Au nanoparticles against cancer. J. Drug Dev. Ind. Pharm. 46(11), 1832–1843 (2020).
Samadian, H. et al. A de novo theranostic nanomedicine composed of PEGylated graphene oxide and gold nanoparticles for cancer therapy. J. Mater. Res. 35(4), 430–441 (2020).
Ayoubi-Joshaghani, M. H. et al. Potential applications of advanced nano/hydrogels in biomedicine: Static, dynamic, multi-stage, and bioinspired. Adv. Fun. Mater. 30(45), 2004098 (2020).
Eskandani, M., Jahanban-Esfahlan, R., Sadughi, M. M. & Jaymand, M. Thermal-responsive β-cyclodextrin-based magnetic hydrogel as a de novo nanomedicine for chemo/hyperthermia treatment of cancerous cells. Heliyon 10(11), e32183 (2024).
Derakhshankhah, H. et al. Folate-conjugated thermal-and pH-responsive magnetic hydrogel as a drug delivery nano-system for “smart” chemo/hyperthermia therapy of solid tumors. Mater. Today Commun. 30, 103148 (2022).
Jahanban-Esfahlan, R. et al. Multi-stimuli-responsive magnetic hydrogel based on tragacanth gum as a de novo nanosystem for targeted chemo/hyperthermia treatment of cancer. J. Mater. Res. 36, 858–869 (2021).
Sayadnia, S., Arkan, E., Jahanban-Esfahlan, R., Sayadnia, S. & Jaymand, M. Tragacanth gum-based pH-responsive magnetic hydrogels for “smart” chemo/hyperthermia therapy of solid tumors. Polym. Adv. Technol. 32(1), 262–271 (2021).
Massoumi, B. et al. Polymers: Electrically conductive nanofibers composed of chitosan-grafted polythiophene and poly (ε-caprolactone) as tissue engineering scaffold. Fibers Polym. 22(1), 49–58 (2021).
Dadashi, H. et al. A rapid protocol for synthesis of chitosan nanoparticles with ideal physicochemical features. Heliyon 10(11), e32228 (2024).
Mahmudi, H. et al. Self-activating chitosan-based nanoparticles for sphingosin-1 phosphate modulator delivery and selective tumor therapy. Int. J. Biol. Macromol. 272, 132940 (2024).
Jahanban-Esfahlan, A. et al. Dynamic DNA nanostructures in biomedicine: Beauty, utility and limits. J. Control. Release 315, 166–185 (2019).
Jahanban-Esfahlan, R. et al. Static DNA nanostructures for cancer theranostics: Recent progress in design and applications. Nannotechnol. Sci. Appl. 2019(12), 25–46 (2019).
Shahpouri, M. et al. Dual-stage acting dendrimeric nanoparticle for deepened chemotherapeutic drug delivery to tumor cells. Adv. Pharm. Bull. https://doi.org/10.34172/apb.2024.054 (2024).
Mollazade, M. et al. PAMAM dendrimers augment inhibitory effects of curcumin on cancer cell proliferation: possible inhibition of telomerase. Asian Pac. J. Cancer Prev. APJCP 14(11), 6925–6928 (2013).
Doustmihan, A. et al. Molecular targets, therapeutic agents and multitasking nanoparticles to deal with cancer stem cells: A narrative review. J. Control. Release 363, 57–83 (2023).
Baghban, R. et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun. Signal. 18, 1–19 (2020).
Seidi, K. et al. Bioinspired hydrogels build a bridge from bench to bedside. Nano Today 39, 101157 (2021).
Hu, C.-M.J. & Zhang, L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem. Pharm. 83(8), 1104–1111 (2012).
Jahanban-Esfahlan, R. et al. Dual stimuli-responsive polymeric hollow nanocapsules as “smart” drug delivery system against cancer. Polym. Plast. Technol. Mater. 59 (13), 1492-1504 (2020).
Ahmadi, S. M., Seyedabadi, M., Ebrahimnejad, P., Abasi, M. & Nokhodchi, A. Efficient delivery of gold nanoparticles and miRNA-33a via cationic PEGylated niosomal formulation to MCF-7 breast cancer cells. AAPS PharmSciTech 25(7), 213 (2024).
Seidi, K., Jahanban-Esfahlan, R. & Zarghami, N. Tumor rim cells: From resistance to vascular targeting agents to complete tumor ablation. Tumour Biol. 39(3), 1010428317691001 (2017).
Seidi, K., Neubauer, H. A., Moriggl, R., Jahanban-Esfahlan, R. & Javaheri, T. Tumor target amplification: Implications for nano drug delivery systems. J. Control. Release 275, 142–161 (2018).
Tarach, P. & Janaszewska, A. Recent advances in preclinical research using PAMAM dendrimers for cancer gene therapy. Int. J. Mol. Sci. 22(6), 2912 (2021).
Fakeri, M., Haghi, M., Jahanban Esfahlan, R., Fathi, M. & Hosseinpour Feizi, M. A. Targeted apoptosis in breast cancer cells via niosome-mediated delivery of cyclophosphamide and sodium oxamate. Mol. Biol. Rep. 52(1), 139 (2025).
Kuhn, M., von Mering, C., Campillos, M., Jensen, L. J. & Bork, P. STITCH: Interaction networks of chemicals and proteins. Nucl. Acids Res. 36, D684-688 (2008).
UniProt, C. UniProt: The universal protein knowledgebase in 2021. Nucl. Acids Res. 49(D1), D480–D489 (2021).
Otasek, D., Morris, J. H., Boucas, J., Pico, A. R. & Demchak, B. Cytoscape automation: Empowering workflow-based network analysis. Genome Biol. 20(1), 185 (2019).
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucl. Acids Res. 51(D1), D587–D592 (2023).
Chin, C. H. et al. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 8(Suppl4), S11 (2014).
Wu, Q., Peng, Z., Zhang, Y. & Yang, J. Coach-D: Improved protein-ligand binding sites prediction with refined ligand-binding poses through molecular docking. Nucl. Acids Res. 46(W1), W438–W442 (2018).
Zheng, W., Zhang, C., Bell, E. W. & Zhang, Y. I-TASSER gateway: A protein structure and function prediction server powered by XSEDE. Future Gener. Comput. Syst. 99, 73–85 (2019).
Heo, L., Park, H. & Seok, C. GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucl. Acids Res. 41, W384-388 (2013).
Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R. & Thornton, J. M. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8(4), 477–486 (1996).
Colovos, C. & Yeates, T. O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci. 2(9), 1511–1519 (1993).
Wiederstein, M. & Sippl, M. J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucl. Acids Res. 35, W407-410 (2007).
Pettersen, E. F. et al. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 1605–1612 (2004).
Kaveh Zenjanab, M. et al. Hyaluronic acid-targeted niosomes for effective breast cancer chemostarvation therapy. ACS Omega 9(9), 10875–10885 (2024).
Sharifi-Azad, M. et al. Codelivery of methotrexate and silibinin by niosome nanoparticles for enhanced chemotherapy of CT26 colon cancer cells. Biomed. Mater. 19(5), 055015 (2024).
Hashemi, Z. et al. Hyaluronic acid-modified theranostic niosomes for targeted fingolimod delivery and inhibition of triple-negative breast cancer metastasis. Med. Oncol. 42(7), 256 (2025).
Fathi, M. et al. Thermo-sensitive chitosan copolymer-gold hybrid nanoparticles as a nanocarrier for delivery of erlotinib. Int. J. Biol. Macromol. 106, 266–276 (2018).
Dadashi, H. et al. Chitosan nanoparticles loaded with metformin and digoxin synergistically inhibit MCF-7 breast cancer cells through suppression of NOTCH-1 and HIF-1α gene expression. Int. J. Biol. Macromol. 287, 138418 (2024).
Esfahlan, R. J. et al. The possible impact of obesity on androgen, progesterone and estrogen receptors (ERalpha and ERbeta) gene expression in breast cancer patients. Breast Cancer 5, 227–237 (2011).
Amiryaghoubi, N. et al. Smart chitosan–folate hybrid magnetic nanoparticles for targeted delivery of doxorubicin to osteosarcoma cells. Colloids Surf. B 220, 112911 (2022).
Khoee, S. & Yaghoobian, M. Chapter 6—Niosomes: A Novel Approach in Modern Drug Delivery Systems. In Nanostructures for Drug Delivery (ed. Andronescu, E.) 207–237 (Elsevier, 2017).
Allen, T. M. & Cullis, P. R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 65(1), 36–48 (2013).
Crucho, C. I. C. & Barros, M. T. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater. Sci. Eng. C 80, 771–784 (2017).
Fox, L. J., Richardson, R. M. & Briscoe, W. H. PAMAM dendrimer-cell membrane interactions. Adv. Coll. Interface. Sci. 257, 1–18 (2018).
Zenjanab, M. K., Pakchin, P. S., Fathi, M., Abdolahinia, E. D. & Adibkia, K. Niosomes containing paclitaxel and gold nanoparticles with different coating agents for efficient chemo/photothermal therapy of breast cancer. Biomed. Mater. 19(3), 035015 (2024).
Alimohammadvand, S. et al. Aripiprazole-loaded niosome/chitosan-gold nanoparticles for breast cancer chemo-photo therapy. BMC Biotechnol. 24(1), 108 (2024).
Chandrakala, V., Aruna, V. & Angajala, G. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems. Emerg. Mater. 5(6), 1593–1615 (2022).
Abdelwahed, W., Degobert, G., Stainmesse, S. & Fessi, H. Freeze-drying of nanoparticles: Formulation, process and storage considerations. Adv. Drug Deliv. Rev. 58(15), 1688–1713 (2006).
Samed, N., Sharma, V. & Sundaramurthy, A. Hydrogen bonded niosomes for encapsulation and release of hydrophilic and hydrophobic anti-diabetic drugs: An efficient system for oral anti-diabetic formulation. Appl. Surf. Sci. 449, 567–573 (2018).
Mehta, S. & Jindal, N. Formulation of tyloxapol niosomes for encapsulation, stabilization and dissolution of anti-tubercular drugs. Colloids Surf. B 101, 434–441 (2013).
Pakchin, P. S., Fathi, M., Ghanbari, H., Saber, R. & Omidi, Y. A novel electrochemical immunosensor for ultrasensitive detection of CA125 in ovarian cancer. Biosens. Bioelectron. 153, 112029 (2020).
Baranei, M. et al. Anticancer effect of green tea extract (GTE)-Loaded pH-responsive niosome coated with PEG against different cell lines. Mater. Today Commun. 26, 101751 (2021).
McNerny, D. Q., Leroueil, P. R. & Baker, J. R. Understanding specific and nonspecific toxicities: A requirement for the development of dendrimer-based pharmaceuticals. Rev. Nanomed. Nanobiotechnol. 2(3), 249–259 (2010).
Kukowska-Latallo, J. F. et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Can. Res. 65(12), 5317–5324 (2005).
King, M. R. & Mohamed, Z. J. Dual nanoparticle drug delivery: The future of anticancer therapies?. Futur. Med. 2, 95–98 (2017).
Liu, J. F., Jang, B., Issadore, D. & Tsourkas, A. Use of magnetic fields and nanoparticles to trigger drug release and improve tumor targeting. Rev. Nanomed. Nanobiotechnol. 11(6), e1571 (2019).
Safari Sharafshadeh, M., Tafvizi, F., Khodarahmi, P. & Ehtesham, S. Folic acid-functionalized PEGylated niosomes co-encapsulated cisplatin and doxoribicin exhibit enhanced anticancer efficacy. Cancer Nanotechnol. 15(1), 14 (2024).
Rezaei, T. et al. Folic acid-decorated ph-responsive nanoniosomes with enhanced endocytosis for breast cancer therapy: In vitro studies. Front. Pharmacol. 13, 851242 (2022).
Bannunah, A. M., Vllasaliu, D., Lord, J. & Stolnik, S. Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: Effect of size and surface charge. Mol. Pharm. 11(12), 4363–4373 (2014).
He, C., Hu, Y., Yin, L., Tang, C. & Yin, C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31(13), 3657–3666 (2010).
Albanese, A., Tang, P. S. & Chan, W. C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14, 1–16 (2012).
Ma, N. et al. Influence of nanoparticle shape, size, and surface functionalization on cellular uptake. J. Nanosci. Nanotechnol. 13(10), 6485–6498 (2013).
Nhan, N. et al. Anti-tumor activity of plant extracts against human breast cancer cells are different in monolayer and three-dimensional cell culture screening models: A comparison on 34 extracts. Biomed. Res. Ther. 7, 3667–3677 (2020).
Xu, Y. et al. Introducing urea into the tirapazamine derivatives to enhance anti-cancer therapy. Nat. Sci. Rev. 11, 038 (2024).
Saunders, M., Patterson, A., Chinje, E., Harris, A. & Stratford, I. NADPH: cytochrome c (P450) reductase activates tirapazamine (SR4233) to restore hypoxic and oxic cytotoxicity in an aerobic resistant derivative of the A549 lung cancer cell line. Br. J. Cancer 82(3), 651–656 (2000).
Zhu, R. et al. Cancer-selective bioreductive chemotherapy mediated by dual hypoxia-responsive nanomedicine upon photodynamic therapy-induced hypoxia aggravation. Biomacromol 20(7), 2649–2656 (2019).
Xie, Z. et al. Targeting tumor hypoxia with stimulus-responsive nanocarriers in overcoming drug resistance and monitoring anticancer efficacy. Acta Biomater. 71, 351–362 (2018).
Ainalem, M.-L. et al. On the ability of PAMAM dendrimers and dendrimer/DNA aggregates to penetrate POPC model biomembranes. J. Phys. Chem. B 114(21), 7229–7244 (2010).
Masoumi Godgaz, S., Asefnejad, A. & Bahrami, S. H. Fabrication of PEGylated SPIONs-loaded niosome for codelivery of paclitaxel and trastuzumab for breast cancer treatment: In vivo study. ACS Appl. Bio Mater. 7(5), 2951–2965 (2024).
Hao, Y. et al. A tumor microenvironment-responsive poly (amidoamine) dendrimer nanoplatform for hypoxia-responsive chemo/chemodynamic therapy. J. Nanobiotechnol. 20(1), 1–15 (2022).
Akbarzadeh, I. et al. The optimized formulation of tamoxifen-loaded niosomes efficiently induced apoptosis and cell cycle arrest in breast cancer cells. AAPS PharmSciTech 23(1), 57 (2022).
Fatemizadeh, M. et al. Apoptosis induction, cell cycle arrest and anti-cancer potential of tamoxifen-curcumin loaded niosomes against MCF-7 cancer cells. Iran. J. Pathol. 17(2), 183 (2022).
Bidkar, A. P., Sanpui, P. & Ghosh, S. S. Red blood cell-membrane-coated poly (lactic-co-glycolic acid) nanoparticles for enhanced chemo-and hypoxia-activated therapy. ACS Appl. Bio Mater. 2(9), 4077–4086 (2019).
Chen, H. et al. Polydopamine-coated UiO-66 nanoparticles loaded with perfluorotributylamine/tirapazamine for hypoxia-activated osteosarcoma therapy. J. Nanobiotechnol. 19, 1–18 (2021).
Zhao, H. et al. Biomimetic decoy inhibits tumor growth and lung metastasis by reversing the drawbacks of sonodynamic therapy. Adv. Healthcare Mater. 9(1), 1901335 (2020).
Zhang, J. et al. Suppression of hypoxia-inducible factor 1α (HIF-1α) by tirapazamine is dependent on eIF2α phosphorylation rather than the mTORC1/4E-BP1 pathway. PLoS ONE 5(11), e13910 (2010).
Balakrishnan, P. et al. Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery. Int. J. Pharm. 377(1–2), 1–8 (2009).