Khoo, H. E., Azlan, A., Tang, S. T. & Lim, S. M. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 61, 1361779 (2017).

PubMed 
PubMed Central 

Google Scholar
 

Noda, Y., Kaneyuki, T., Mori, A. & Packer, L. Antioxidant activities of pomegranate fruit extract and its anthocyanidins: delphinidin, cyanidin, and pelargonidin. J. Agric. Food Chem. 50, 166–171 (2002).

PubMed 

Google Scholar
 

Pal, H. C. et al. Delphinidin reduces cell proliferation and induces apoptosis of non-small-cell lung cancer cells by targeting EGFR/VEGFR2 signaling pathways. PLoS One. 8, 1–13 (2013).


Google Scholar
 

Sogo, T. et al. Anti-inflammatory activity and molecular mechanism of Delphinidin 3‐sambubioside, a hibiscus anthocyanin. Biofactors 41, 58–65 (2015).

PubMed 

Google Scholar
 

Rathod, S. S., Rani, S. B., Khan, M., Muzumdar, D. & Shiras, A. Tumor suppressive miRNA-34a suppresses cell proliferation and tumor growth of glioma stem cells by targeting Akt and Wnt signaling pathways. FEBS Open. Bio. 4, 485–495 (2014).

PubMed 
PubMed Central 

Google Scholar
 

Zhao, L. et al. MicroRNA-383 regulates the apoptosis of tumor cells through targeting Gadd45g. PLoS One. 9, e110472 (2014).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Kornfeld, J. W. et al. Obesity-induced overexpression of miR-802 impairs glucose metabolism through Silencing of Hnf1b. Nature 494, 111–115 (2013).

ADS 
PubMed 

Google Scholar
 

Sun, X. et al. MicroRNA-181b regulates NF-κB–mediated vascular inflammation. J. Clin. Invest. 122, 1973–1990 (2012).

PubMed 
PubMed Central 

Google Scholar
 

Wang, Y. & Lee, C. G. MicroRNA and cancer–focus on apoptosis. J. Cell. Mol. Med. 13, 12–23 (2009).

PubMed 

Google Scholar
 

Bonauer, A., Boon, A., Dimmeler, S. & R. & Vascular Micrornas. Curr. Drug Targets. 11, 943–949 (2010).

PubMed 

Google Scholar
 

Eisenberg, I., Alexander, M. S. & Kunkel, L. M. MiRNAS in normal and diseased skeletal muscle. J. Cell. Mol. Med. 13, 2–11 (2009).

PubMed 

Google Scholar
 

Balzeau, J., Menezes, M. R., Cao, S. & Hagan, J. P. The LIN28/let-7 pathway in cancer. Front. Genet. 8, 31 (2017).

PubMed 
PubMed Central 

Google Scholar
 

Trang, P. et al. Regression of murine lung tumors by the let-7 MicroRNA. Oncogene 29, 1580–1587 (2010).

PubMed 

Google Scholar
 

Yu, F. et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131, 1109–1123 (2007).

PubMed 

Google Scholar
 

Cannataro, R., Fazio, A., La Torre, C., Caroleo, M. C. & Cione, E. Polyphenols in the mediterranean diet: from dietary sources to MicroRNA modulation. Antioxidants 10, 328 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Murata, M. et al. Delphinidin prevents muscle atrophy and upregulates miR-23a expression. J. Agric. Food Chem. 65, 45–50 (2017).

PubMed 

Google Scholar
 

Murata, M. et al. Circulating MiRNA profiles in mice plasma following flavonoid intake. Mol. Biol. Rep. 49, 10399–10407 (2022).

PubMed 

Google Scholar
 

Tachibana, H., Koga, K., Fujimura, Y. & Yamada, K. A receptor for green tea polyphenol EGCG. Nat. Struct. Mol. Biol. 11, 380–381 (2004).

PubMed 

Google Scholar
 

Tsukamoto, S. et al. Green tea polyphenol EGCG induces lipid-raft clustering and apoptotic cell death by activating protein kinase Cδ and acid Sphingomyelinase through a 67 kda laminin receptor in multiple myeloma cells. Biochem. J. 443, 525–534 (2012).

PubMed 

Google Scholar
 

Kumazoe, M. et al. 67-kDa laminin receptor increases cGMP to induce cancer-selective apoptosis. J. Clin. Invest. 123, 787–799 (2013).

PubMed 
PubMed Central 

Google Scholar
 

Hong Byun, E., Fujimura, Y., Yamada, K. & Tachibana, H. TLR4 signaling inhibitory pathway induced by green tea polyphenol epigallocatechin-3-gallate through 67-kDa laminin receptor. J. Immunol. 185, 33–45 (2010).

PubMed 

Google Scholar
 

Fujimura, Y., Yamada, K. & Tachibana, H. A lipid raft-associated 67 kda laminin receptor mediates suppressive effect of epigallocatechin-3-O-gallate on FcεRI expression. Biochem. Biophys. Res. Commun. 336, 674–681 (2005).

PubMed 

Google Scholar
 

Umeda, D., Yano, S., Yamada, K. & Tachibana, H. Green tea polyphenol epigallocatechin-3-gallate signaling pathway through 67-kDa laminin receptor. J. Biol. Chem. 283, 3050–3058 (2008).

PubMed 

Google Scholar
 

Tsukamoto, S. et al. 67-kDa laminin receptor-dependent protein phosphatase 2A (PP2A) activation elicits melanoma-specific antitumor activity overcoming drug resistance. J. Biol. Chem. 289, 32671–32681 (2014).

PubMed 
PubMed Central 

Google Scholar
 

Yamashita, S. et al. Soy isoflavone metabolite equol inhibits cancer cell proliferation in a PAP associated domain containing 5-dependent and an Estrogen receptor-independent manner. J. Nutr. Biochem. 100, 108910 (2022).

PubMed 

Google Scholar
 

Roninson, I. B. et al. Genetic suppressor elements: new tools for molecular oncology—thirteenth cornelius P. Rhoads memorial award lecture. Cancer Res. 55, 4023–4028 (1995).

PubMed 

Google Scholar
 

Yamada, S. et al. Epigallocatechin-3-O-gallate up-regulates microRNA-let-7b expression by activating 67-kDa laminin receptor signaling in melanoma cells. Sci. Rep. 6, 1–8 (2016).


Google Scholar
 

Sherr, C. J. & Roberts, J. M. Living with or without cyclins and cyclin-dependent kinases. Genes Dev. 18, 2699–2711 (2004).

PubMed 

Google Scholar
 

Schultz, J., Lorenz, P., Gross, G., Ibrahim, S. & Kunz, M. MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell. Res. 18, 549–557 (2008).

PubMed 

Google Scholar
 

Fu, T. Y. et al. Let-7b-mediated suppression of Basigin expression and metastasis in mouse melanoma cells. Exp. Cell. Res. 317, 445–451 (2011).

PubMed 

Google Scholar
 

Liu, Y. et al. miR-10a suppresses colorectal cancer metastasis by modulating the epithelial-to-mesenchymal transition and Anoikis. Cell. Death Dis. 8, e2739 (2017).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Fu, X., Mao, X., Wang, Y., Ding, X. & Li, Y. Let-7c-5p inhibits cell proliferation and induces cell apoptosis by targeting ERCC6 in breast cancer. Oncol. Rep. 38, 1851–1856 (2017).

PubMed 

Google Scholar
 

Singh, R. P., Dhanalakshmi, S. & Agarwal, R. Phytochemicals as cell cycle modulators a less toxic approach in halting human cancers. Cell. Cycle. 1, 155–160 (2002).


Google Scholar
 

Wu, A. et al. Delphinidin induces cell cycle arrest and apoptosis in HER–2 positive breast cancer cell lines by regulating the NF–κB and MAPK signaling pathways. Oncol. Lett. 22, 1–11 (2021).

ADS 

Google Scholar
 

Yun, J. M., Afaq, F., Khan, N. & Mukhtar, H. Delphinidin, an Anthocyanidin in pigmented fruits and vegetables, induces apoptosis and cell cycle arrest in human colon cancer HCT116 cells. Mol. Carcinog. 48, 260–270 (2009).

PubMed 
PubMed Central 

Google Scholar
 

Bernstein, D. L., Jiang, X. & Rom, S. let-7 microRNAs: their role in cerebral and cardiovascular diseases, inflammation, cancer, and their regulation. Biomedicines 9, 606 (2021).

Heo, I. et al. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol. Cell. 32, 276–284 (2008).

PubMed 

Google Scholar
 

Faehnle, C. R., Walleshauser, J. & Joshua-Tor, L. Multi-domain utilization by TUT4 and TUT7 in control of let-7 biogenesis. Nat. Struct. Mol. Biol. 24, 658–665 (2017).

PubMed 
PubMed Central 

Google Scholar
 

Venza, I. et al. ROS as regulators of cellular processes in melanoma. Oxid. Med. Cell Longev. 1208690 (2021). (2021).

Kähkönen, M. P. & Heinonen, M. Antioxidant activity of anthocyanins and their Aglycons. J. Agric. Food Chem. 51, 628–633 (2003).

PubMed 

Google Scholar
 

Nagase, H., Sasaki, K., Kito, H., Haga, A. & Sato, T. Inhibitory effect of Delphinidin from solanum melongena on human fibrosarcoma HT-1080 invasiveness in vitro. Planta Med. 64, 216–219 (1998).

PubMed 

Google Scholar
 

Afaq, F. et al. Delphinidin, an Anthocyanidin in pigmented fruits and vegetables, protects human HaCaT keratinocytes and mouse skin against UVB-mediated oxidative stress and apoptosis. J. Invest. Dermatol. 127, 222–232 (2007).

PubMed 

Google Scholar
 

Pyo, C. W., Choi, J. H., Oh, S. M. & Choi, S. Y. Oxidative stress-induced Cyclin D1 depletion and its role in cell cycle processing. Biochim. Biophys. Acta. 1830, 5316–5325 (2013).

PubMed 

Google Scholar
 

Jackstadt, R. & Hermeking, H. MicroRNAs as regulators and mediators of c-MYC function. Biochim. Biophys. Acta. 1849, 544–553 (2015).

PubMed 

Google Scholar
 

Liu, J., Zhang, C., Zhao, Y. & Feng, Z. MicroRNA control of p53. J. Cell. Biochem. 118, 7–14 (2017).

PubMed 

Google Scholar
 

Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F. & Hannon, G. J. Processing of primary MicroRNAs by the microprocessor complex. Nature 432, 231–235 (2004).

ADS 
PubMed 

Google Scholar
 

Winter, J., Jung, S., Keller, S., Gregory, R. I. & Diederichs, S. Many roads to maturity: MicroRNA biogenesis pathways and their regulation. Nat. Cell. Biol. 11, 228–234 (2009).

PubMed 

Google Scholar
 

Slezak-Prochazka, I., Durmus, S., Kroesen, B. J. & van den Berg, A. MicroRNAs, macrocontrol: regulation of MiRNA processing. RNA 16, 1087–1095 (2010).

PubMed 
PubMed Central 

Google Scholar
 

Van Kouwenhove, M., Kedde, M. & Agami, R. MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat. Rev. Cancer. 11, 644–656 (2011).

PubMed 

Google Scholar
 

Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

PubMed 
PubMed Central 

Google Scholar