Baker, R. E. et al. Infectious disease in an era of global change. Nat. Rev. Microbiol. 20, 193–205 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Hu, B., Guo, H., Zhou, P. & Shi, Z. L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol.19, 141–154 (2020).

PubMed 
PubMed Central 

Google Scholar
 

Cascella, M., Rajnik, M., Cuomo, A., Dulebohn, S. C. & Di Napoli, R. Features, evaluation, and treatment of coronavirus (COVID-19). (StatPearls, 2023).

Pöhlker, M. L. et al. Respiratory aerosols and droplets in the transmission of infectious diseases. Rev. Mod. Phys. 95, 045001 (2021).


Google Scholar
 

Chong, K. L. et al. Extended lifetime of respiratory droplets in a turbulent vapor puff and its implications on airborne disease transmission. Phys. Rev. Lett. 126, 034502 (2021).

PubMed 

Google Scholar
 

Ng, C. S. et al. Growth of respiratory droplets in cold and humid air. Phys. Rev. Fluids 6, 054303 (2021).


Google Scholar
 

Parienta, D. et al. Theoretical analysis of the motion and evaporation of exhaled respiratory droplets of mixed composition. J. Aerosol Sci. 42, 1–10 (2011).


Google Scholar
 

Xie, X., Li, Y., Chwang, A. T. Y., Ho, P. L. & Seto, W. H. How far droplets can move in indoor environments – revisiting the Wells evaporation–falling curve. Indoor Air 17, 211–225 (2007).

PubMed 

Google Scholar
 

Cheng, C. H., Chow, C. L. & Chow, W. K. Trajectories of large respiratory droplets in indoor environment: a simplified approach. Build Environ. 183, 107196 (2020).

PubMed 
PubMed Central 

Google Scholar
 

Wang, C. C. et al. Airborne transmission of respiratory viruses. Science 373, 6558 (2021).

Kutter, J. S. et al. SARS-CoV and SARS-CoV-2 are transmitted through the air between ferrets over more than one meter distance. Nat. Commun.12, 1–8 (2021).


Google Scholar
 

Katelaris, A. L. et al. Epidemiologic evidence for airborne transmission of SARS-CoV-2 during church singing, Australia, 2020 – Volume 27, Number 6—June 2021 – emerging infectious diseases journal – CDC. Emerg. Infect. Dis. 27, 1677–1680 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Azimi, P., Keshavarz, Z., Cedeno Laurent, J. G., Stephens, B. & Allen, J. G. Mechanistic transmission modeling of COVID-19 on the Diamond Princess cruise ship demonstrates the importance of aerosol transmission. Proc. Natl. Acad. Sci. USA 118, e2015482118 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Li, Y. et al. Probable airborne transmission of SARS-CoV-2 in a poorly ventilated restaurant. Build Environ. 196, 107788 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Santarpia, J. L. et al. Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Sci.Rep. 10, 12732 (2020).

Raines, K. S., Doniach, S. & Bhanot, G. The transmission of SARS-CoV-2 is likely comodulated by temperature and by relative humidity. PLoS One 16, e0255212 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Ma, Y., Pei, S., Shaman, J., Dubrow, R. & Chen, K. Role of meteorological factors in the transmission of SARS-CoV-2 in the United States. Nat Commun 12, 3602 (2021).

Ward, M. P., Xiao, S. & Zhang, Z. Humidity is a consistent climatic factor contributing to SARS-CoV-2 transmission. Transbound. Emerg. Dis. 67, 3069–3074 (2020).

PubMed 

Google Scholar
 

Arifur Rahman, M., Golzar Hossain, M., Singha, A. C., Sayeedul Islam, M. & Ariful Islam, M. A retrospective analysis of influence of environmental/ air temperature and relative humidity on SARS-CoV-2 outbreak. J. Pure Appl Microbiol 14, 1705–1714 (2020).


Google Scholar
 

Wang, J. et al. Short-range exposure to airborne virus transmission and current guidelines. Proc. Natl. Acad. Sci. USA 118, e2105279118 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Lin, K., Schulte, C. R. & Marr, L. C. Survival of MS2 and Φ6 viruses in droplets as a function of relative humidity, pH, and salt, protein, and surfactant concentrations. PLoS One 15, e0243505 (2020).

Weber, T. P. & Stilianakis, N. I. Inactivation of influenza A viruses in the environment and modes of transmission: a critical review. J. Infect. 57, 361–373 (2008).

PubMed 
PubMed Central 

Google Scholar
 

Pica, N. & Bouvier, N. M. Environmental factors affecting the transmission of respiratory viruses. Curr. Opin. Virol. 2, 90–95 (2012).

PubMed 
PubMed Central 

Google Scholar
 

Aboubakr, H. A., Sharafeldin, T. A. & Goyal, S. M. Stability of SARS-CoV-2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: a review. Transbound. Emerg. Dis. 68, 296–312 (2021).

PubMed 

Google Scholar
 

Yang, W., Elankumaran, S. & Marr, L. C. Relationship between humidity and influenza A viability in droplets and implications for influenza’s seasonality. PLoS One 7, e46789 (2012).

Bogani, G. et al. Transmission of SARS-CoV-2 in surgical smoke during laparoscopy: a prospective, proof-of-concept study. J. Minim. Invasive Gynecol. 28, 1519–1525 (2021).

PubMed 

Google Scholar
 

Setti, L. et al. Original research: potential role of particulate matter in the spreading of COVID-19 in Northern Italy: first observational study based on initial epidemic diffusion. BMJ Open 10, e039338 (2020).

Xu, R. et al. Weather, air pollution, and SARS-CoV-2 transmission: a global analysis. Lancet Planet Health 5, e671–e680 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Wu, X., Nethery, R. C., Sabath, M. B., Braun, D. & Dominici, F. Air pollution and COVID-19 mortality in the United States: strengths and limitations of an ecological regression analysis. Sci Adv 6, eabd4049 (2020).

Engin, A. B., Engin, E. D. & Engin, A. Two important controversial risk factors in SARS-CoV-2 infection: obesity and smoking. Environ. Toxicol. Pharm. 78, 103411 (2020).


Google Scholar
 

Tomchaney, M. et al. Paradoxical effects of cigarette smoke and COPD on SARS-CoV-2 infection and disease. BMC Pulm. Med 21, 1–14 (2021).


Google Scholar
 

Simons, D., Shahab, L., Brown, J. & Perski, O. The association of smoking status with SARS-CoV-2 infection, hospitalization and mortality from COVID-19: a living rapid evidence review with Bayesian meta-analyses (version 7). Addiction 116, 1319–1368 (2021).

PubMed 

Google Scholar
 

Grundy, E. J., Suddek, T., Filippidis, F. T., Majeed, A. & Coronini-Cronberg, S. Smoking, SARS-CoV-2 and COVID-19: a review of reviews considering implications for public health policy and practice. Tob Induc Dis 18, 18332 (2020).

Barakat, T., Muylkens, B. & Su, B. L. Is Particulate matter of air pollution a vector of Covid-19 pandemic? Matter 3, 977 (2020).

PubMed 
PubMed Central 

Google Scholar
 

Shihadeh, A. et al. Toxicant content, physical properties and biological activity of waterpipe tobacco smoke and its tobacco-free alternatives. Tob Control 24, 22–30 (2015).

Benowitz, N. L. et al. Tobacco product use and the risks of SARS-CoV-2 infection and COVID-19: current understanding and recommendations for future research. Lancet Respir. Med. 10, 900–915 (2022).

PubMed 
PubMed Central 

Google Scholar
 

van Doremalen, N. et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 382, 1564–1567 (2020).

PubMed 

Google Scholar
 

Chin, A. W. H. et al. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe 1, e10 (2020).

PubMed 
PubMed Central 

Google Scholar
 

Ronca, S. E., Sturdivant, R. X., Barr, K. L. & Harris, D. SARS-CoV-2 viability on 16 common indoor surface finish materials. Health Environ. Res. Des. J. 14, 49–64 (2021).


Google Scholar
 

Oswin, H. P. et al. The dynamics of SARS-CoV-2 infectivity with changes in aerosol microenvironment. Proc. Natl. Acad. Sci. USA 119, e2200109119 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Dudalski, N. et al. Experimental investigation of far field human cough airflows from healthy and influenza-infected subjects. Indoor Air 30, 966–977 (2020).

Laue, M. et al. Morphometry of SARS-CoV and SARS-CoV-2 particles in ultrathin plastic sections of infected Vero cell cultures. Sci. Rep.11, 1–11 (2021).


Google Scholar
 

Cureton, D. K., Massol, R. H., Whelan, S. P. J. & Kirchhausen, T. The length of vesicular stomatitis virus particles dictates a need for actin assembly during clathrin-dependent endocytosis. PLoS Pathog. 6, e1001127 (2010).

PubMed 
PubMed Central 

Google Scholar
 

Jackson, C. B., Farzan, M., Chen, B. & Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 23, 3–20 (2022).

PubMed 

Google Scholar
 

Sungnak, W., Huang, N., Bécavin, C., Berg, M. & Lung, H. C. A. Biological network. SARS-CoV-2 entry genes are most highly expressed in nasal goblet and ciliated cells within human airways. ArXiv 26, 681–687 (2020).


Google Scholar
 

Victor H. K. Lam. Characterizing and Applying a Nasal Organotypic Model to Investigate the Effects of Immune Profile Types on SARS-CoV-2 Susceptibility. Electronic Thesis and Dissertation Repository (Western University, 2024).

Ijaz, M. K., Brunner, A. H., Sattar, S. A., Nair, R. C. & Johnson-Lussenburg, C. M. Survival characteristics of airborne human coronavirus 229E. J. Gen. Virol. 66, 2743–2748 (1985).

PubMed 

Google Scholar
 

van Doremalen, N., Bushmaker, T. & Munster, V. J. Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions. Eurosurveillance 18, 20590 (2013).

PubMed 

Google Scholar
 

Chan, K. H. et al. The effects of temperature and relative humidity on the viability of the SARS coronavirus. Adv. Virol. 2011, 734690 (2011).

Lowen, A. C., Mubareka, S., Steel, J. & Palese, P. Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog. 3, e151 (2007).

PubMed 
PubMed Central 

Google Scholar
 

Nazaroff, W. W. Indoor aerosol science aspects of SARS-CoV-2 transmission. Indoor Air 32, e12970 (2022).

PubMed 

Google Scholar
 

Azuma, K. et al. Environmental factors involved in SARS-CoV-2 transmission: effect and role of indoor environmental quality in the strategy for COVID-19 infection control. Environ. Health Prev. Med. 25, 1–16 (2020).


Google Scholar
 

Dinoi, A. et al. A review on measurements of SARS-CoV-2 genetic material in air in outdoor and indoor environments: implication for airborne transmission. Sci. Total Environ. 809, 151137 (2022).

PubMed 

Google Scholar
 

Qian, H. et al. Indoor transmission of SARS-CoV-2. Indoor Air 31, 639–645 (2021).

PubMed 

Google Scholar
 

Rozo-Lopez, P., Drolet, B. S. & Londoño-Renteria, B. Vesicular stomatitis virus transmission: a comparison of incriminated vectors. Insects 9, 190 (2018).

Berthelot, C. et al. Adaptation of proteins to the cold in Antarctic fish: a role for methionine? Genome Biol. Evol. 11, 220–231 (2019).

PubMed 

Google Scholar
 

Hays, L. M. et al. Fish antifreeze glycoproteins protect cellular membranes during lipid-phase transitions. Physiology 12, 189–194 (1997).

Xu, Z. et al. Thermal and environmental stability of Siniperca chuatsi Rhabdovirus. Aquaculture 568, 739308 (2023).


Google Scholar
 

Bajimaya, S., Frankl, T., Hayashi, T. & Takimoto, T. Cholesterol is required for stability and infectivity of influenza A and respiratory syncytial viruses. Virology 510, 234–241 (2017).

PubMed 

Google Scholar
 

Iriarte-Alonso, M. A., Bittner, A. M. & Chiantia, S. Influenza A virus hemagglutinin prevents extensive membrane damage upon dehydration. BBA Adv. 2, 100048 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Ivanova, P. T. et al. Lipid composition of the viral envelope of three strains of influenza virus – not all viruses are created equal. ACS Infect. Dis. 1, 435–442 (2016).


Google Scholar
 

Mesquita, F. S. et al. S-acylation controls SARS-CoV-2 membrane lipid organization and enhances infectivity. Dev. Cell 56, 2790–2807 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Fattorini, D. & Regoli, F. Role of the chronic air pollution levels in the Covid-19 outbreak risk in Italy. Environ. Pollut. 264, 114732 (2020).

PubMed 
PubMed Central 

Google Scholar
 

Zhu, Y., Xie, J., Huang, F. & Cao, L. Association between short-term exposure to air pollution and COVID-19 infection: evidence from China. Sci. Total Environ. 727, 138704 (2020).

PubMed 
PubMed Central 

Google Scholar
 

Miyashita, L., Foley, G. & Grigg, J. Exposure to particulate matter increases expression of the angiotensin converting enzyme-2 (ACE2) receptor. J. Allergy Clin. Immunol. 149, AB30 (2022).

PubMed Central 

Google Scholar
 

Lin, C. I. et al. Instillation of particulate matter 2.5 induced acute lung injury and attenuated the injury recovery in ACE2 knockout mice. Int J. Biol. Sci. 14, 253 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Aztatzi-Aguilar, O. G., Uribe-Ramírez, M., Arias-Montaño, J. A., Barbier, O. & De Vizcaya-Ruiz, A. Acute and subchronic exposure to air particulate matter induces expression of angiotensin and bradykinin-related genes in the lungs and heart: angiotensin-II type-I receptor as a molecular target of particulate matter exposure. Part Fibre Toxicol. 12, 1–18 (2015).


Google Scholar
 

Cao, C. et al. Inhalable microorganisms in Beijing’s PM2.5 and PM10 pollutants during a severe smog event. Environ. Sci. Technol. 48, 1499–1507 (2014).

PubMed 
PubMed Central 

Google Scholar
 

Borisova, T. & Komisarenko, S. Air pollution particulate matter as a potential carrier of SARS-CoV-2 to the nervous system and/or neurological symptom enhancer: arguments in favor. Environ. Sci. Pollut. Res. 28, 40371–40377 (2021).


Google Scholar
 

Zhao, Y. et al. Airborne transmission may have played a role in the spread of 2015 highly pathogenic avian influenza outbreaks in the United States. Sci. Rep.9, 1–10 (2019).


Google Scholar
 

Jonges, M. et al. Wind-mediated spread of low-pathogenic avian influenza virus into the environment during outbreaks at commercial poultry farms. PLoS One 10, e0125401 (2015).

PubMed 
PubMed Central 

Google Scholar
 

Farhangrazi, Z. S., Sancini, G., Hunter, A. C. & Moghimi, S. M. Airborne particulate matter and SARS-CoV-2 partnership: virus hitchhiking, stabilization and immune cell targeting — a hypothesis. Front. Immunol. 11, 579352 (2020).

PubMed 
PubMed Central 

Google Scholar
 

Thelestam, M., Curvall, M. & Enzell, C. R. Effect of tobacco smoke compounds on the plasma membrane of cultured human lung fibroblasts. Toxicology 15, 203–217 (1980).

PubMed 

Google Scholar
 

Warnes, S. L., Little, Z. R. & Keevil, C. W. Human coronavirus 229E remains infectious on common touch surface materials. mBio 6, e01697 (2015).

Minoshima, M. et al. Comparison of the antiviral effect of solid-state copper and silver compounds. J. Hazard Mater. 312, 1–7 (2016).

PubMed 
PubMed Central 

Google Scholar
 

Govind, V. et al. Antiviral properties of copper and its alloys to inactivate covid-19 virus: a review. BioMetals 34, 1217–1235 (2021).

Su, L. J. et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid. Med Cell Longev. 2019, 5080843 (2019).

PubMed 
PubMed Central 

Google Scholar
 

Paulsen, C. E. & Carroll, K. S. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem. Rev. 113, 4633–4679 (2013).

PubMed 
PubMed Central 

Google Scholar
 

Stegelmeier, A. A. et al. Characterization of the impact of oncolytic vesicular stomatitis virus on the trafficking, phenotype, and antigen presentation potential of neutrophils and their ability to acquire a non-structural viral protein. Int. J. Mol. Sci. 21, 6347 (2020).

Kärber, G. Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Naunyn Schmiedebergs Arch. Exp. Pathol. Pharmakol. 162, 480–483 (1931).


Google Scholar
 

Amanat, F. et al. An in vitro microneutralization assay for SARS-CoV-2 serology and drug screening. Curr. Protoc. Microbiol. 58, e108 (2020).

Corporate Authors(s): National Center for Immunization and Respiratory Diseases (U.S.). Division of Viral Diseases. 2019-novel coronavirus (2019-nCoV) real-time rRT-PCR panel primers and probes. Series: Coronavirus Disease 2019 (COVID-19) (2020).

McGregor, B. L., Rozo-Lopez, P., Davis, T. M. & Drolet, B. S. Detection of vesicular stomatitis virus indiana from insects collected during the 2020 outbreak in Kansas, USA. Pathogens 10, 1126 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Nakayama, T. et al. Assessment of suitable reference genes for RT-qPCR studies in chronic rhinosinusitis. Sci Rep 8, 1568 (2018).