Beyth-Marom, R., Fischhoff, B., Quadrel, M. J. & Furby, L. in Teaching Decision Making to Adolescents (eds Baron, J. & Brown, R. V.) (Routledge, 1991).

Stanovich, K. E. & West, R. F. What intelligence tests miss. Psychologist 27, 80–83 (2014).


Google Scholar
 

Toplak, M. E., Sorge, G. B., Benoit, A., West, R. F. & Stanovich, K. E. Decision-making and cognitive abilities: a review of associations between Iowa Gambling Task performance, executive functions, and intelligence. Clin. Psychol. Rev. 30, 562–581 (2010).

PubMed 

Google Scholar
 

Stanovich, K. E., West, R. F. & Toplak, M. E. The Rationality Quotient: Toward a Test of Rational Thinking (MIT Press, 2016).

Aczel, B., Bago, B., Szollosi, A., Foldes, A. & Lukacs, B. Is it time for studying real-life debiasing? Evaluation of the effectiveness of an analogical intervention technique. Front. Psychol. 6, 1120 (2015).

PubMed 
PubMed Central 

Google Scholar
 

Yagoda, B. The cognitive biases tricking your brain. The Atlantic (September 2018).

Featherston, R. et al. Interventions to mitigate bias in social work decision-making: a systematic review. Res. Soc. Work Pract. 29, 741–752 (2019).


Google Scholar
 

Prakash, S., Sladek, R. M. & Schuwirth, L. Interventions to improve diagnostic decision making: a systematic review and meta-analysis on reflective strategies. Med. Teach. 41, 517–524 (2019).

PubMed 

Google Scholar
 

Ludolph, R. & Schulz, P. J. Debiasing health-related judgments and decision making: a systematic review. Med. Decis. Making 38, 3–13 (2018).

PubMed 

Google Scholar
 

Tversky, A. & Kahneman, D. Judgment under uncertainty: heuristics and biases. Science 185, 1124–1131 (1974).

CAS 
PubMed 

Google Scholar
 

Gigerenzer, G. & Gaissmaier, W. Heuristic decision making. Annu. Rev. Psychol. 62, 451–482 (2011).

PubMed 

Google Scholar
 

Kahneman, D. & Klein, G. Conditions for intuitive expertise: a failure to disagree. Am. Psychol. 64, 515–526 (2009).

PubMed 

Google Scholar
 

Funder, D. C. Errors and mistakes: evaluating the accuracy of social judgment. Psychol. Bull. 101, 75–90 (1987).

CAS 
PubMed 

Google Scholar
 

Pronin, E. Perception and misperception of bias in human judgment. Trends Cogn. Sci. 11, 37–43 (2007).

PubMed 

Google Scholar
 

Saposnik, G., Redelmeier, D., Ruff, C. C. & Tobler, P. N. Cognitive biases associated with medical decisions: a systematic review. BMC Med. Inform. Decis. Mak. 16, 138 (2016).

PubMed 
PubMed Central 

Google Scholar
 

Featherston, R., Downie, L. E., Vogel, A. P. & Galvin, K. L. Decision making biases in the allied health professions: a systematic scoping review. PLoS ONE 15, e0240716 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Edmond, G. & Martire, K. A. Just cognition: scientific research on bias and some implications for legal procedure and decision-making. Modern L. Rev. 82, 633–664 (2019).


Google Scholar
 

Blanco, F. in Encyclopedia of Animal Cognition and Behavior (eds Vonk, J. & Shackelford, T. K.) (Springer, 2022).

Odds of dying. Injury facts. National Safety Council https://injuryfacts.nsc.org/all-injuries/preventable-death-overview/odds-of-dying/ (2017).

Stanovich, K. E. & West, R. F. The assessment of rational thinking: IQ ≠ RQ. Teach. Psychol. 41, 265–271 (2014).


Google Scholar
 

Bruine de Bruin, W., Parker, A. M. & Fischhoff, B. Decision-making competence: more than intelligence? Curr. Dir. Psychol. Sci. 29, 186–192 (2020).


Google Scholar
 

Ghazal, S., Cokely, E. T., Garcia-Retamero, R. & Feltz, A. Cambridge Handbook of Expertise and Expert Performance (Cambridge Univ. Press, 2018).

Primi, C., Donati, M. A., Chiesi, F. & Panno, A. in Individual Differences in Judgement and Decision-Making (eds Toplak, M. E. & Weller, J.) 58–76 (Psychology Press, 2016).

Wechsler, D. WAIS-IV: Wechsler Adult Intelligence Scale—Fourth Edition (Pearson, 2008).

Stanovich, K. E. The comprehensive assessment of rational thinking. Educ. Psychol. 51, 23–34 (2016).


Google Scholar
 

Todd, B. Notes on good judgement and how to develop it. 80,000 Hours https://80000hours.org/2020/09/good-judgement/ (2020).

Kahneman, D. Thinking, Fast and Slow (Penguin, 2011).

Stanovich, K. E. Miserliness in human cognition: the interaction of detection, override and mindware. Think. Reason. 24, 423–444 (2018).


Google Scholar
 

Toplak, M. E., West, R. F. & Stanovich, K. E. Real-world correlates of performance on heuristics and biases tasks in a community sample. J. Behav. Decis. Mak. 30, 541–554 (2017).


Google Scholar
 

Chandler, J., Paolacci, G., Peer, E., Mueller, P. & Ratliff, K. A. Using nonnaive participants can reduce effect sizes. Psychol. Sci. 26, 1131–1139 (2015).

PubMed 

Google Scholar
 

Haigh, M. Has the standard cognitive reflection test become a victim of its own success? Adv. Cogn. Psychol. 12, 145–149 (2016).

PubMed 
PubMed Central 

Google Scholar
 

Bruine de Bruin, W., Parker, A. M. & Fischhoff, B. Individual differences in adult decision-making competence. J. Pers. Soc. Psychol. 92, 938–956 (2007).

PubMed 

Google Scholar
 

Parker, A. M. & Fischhoff, B. Decision-making competence: external validation through an individual-differences approach. J. Behav. Decis. Mak. 18, 1–27 (2005).


Google Scholar
 

Ro, C. The complicated battle over unconscious-bias training. BBC (29 March 2021).

Sukhera, J. Starbucks and the impact of implicit bias training. The Conversation (27 May 2018).

Walker, T. B. & Feloni, R. Here’s the presentation Google gives employees on how to spot unconscious bias at work. Business Insider (2020).

Cantarelli, P., Belle, N. & Belardinelli, P. Behavioral public HR: experimental evidence on cognitive biases and debiasing interventions. Rev. Public Pers. Adm. 40, 56–81 (2020).


Google Scholar
 

Morewedge, C. K. et al. Debiasing decisions: improved decision making with a single training intervention. Policy Insights Behav. Brain Sci. 2, 129–140 (2015).


Google Scholar
 

Davies, M. in Higher Education: Handbook of Theory and Research (ed. Perna, L. W.) 41–92 (Springer, 2015).

Stanovich, K. E. The Oxford Handbook Of Thinking And Reasoning (Oxford Univ. Press, 2012).

Ennis, R. H. The Palgrave Handbook of Critical Thinking in Higher Education (Palgrave Macmillan, 2015).

Common core state standards. National Governors Association https://preview.fadss.org/resources/webinars/webinar2/FSBAPresentationforCommunities_transcribed.pdf (2010).

Next Generation Science Standards: for States, by States (National Academies Press, 2013).

Abrami, P. C. et al. Strategies for teaching students to think critically: a meta-analysis. Rev. Educ. Res. 85, 275–314 (2015).


Google Scholar
 

Mao, W., Cui, Y., Chiu, M. M. & Lei, H. Effects of game-based learning on students’ critical thinking: a meta-analysis. J. Educ. Comput. Res. 59, 1682–1708 (2022).


Google Scholar
 

Xu, E., Wang, W. & Wang, Q. The effectiveness of collaborative problem solving in promoting students’ critical thinking: a meta-analysis based on empirical literature. Humanit. Soc. Sci. Commun. 10, 16 (2023).


Google Scholar
 

Ennis, R. H. Critical thinking and subject specificity: clarification and needed research. Educ. Res. 18, 4 (1989).


Google Scholar
 

Siegel, H. Education’s Epistemology: Rationality, Diversity, and Critical Thinking (Oxford Univ. Press, 2017).

Hattie, J. Visible Learning: A Synthesis of over 800 Meta-Analyses Relating to Achievement (Routledge, 2008).

Page, M. J. et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. Br. Med. J. 372, n160 (2021).


Google Scholar
 

Haddaway, N. R., Page, M. J., Pritchard, C. C. & McGuinness, L. A. PRISMA2020: an R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and open synthesis. Campbell Syst. Rev. 18, e1230 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Calvillo, D. P., Bratton, J., Velazquez, V., Smelter, T. J. & Crum, D. Elaborative feedback and instruction improve cognitive reflection but do not transfer to related tasks. Think. Reason. 29, 276–304 (2022).


Google Scholar
 

Salvatore, J. & Morton, T. A. Evaluations of science are robustly biased by identity concerns. Group Process. Intergr. Relat. 24, 568–582 (2021).


Google Scholar
 

van Brussel, S., Timmermans, M., Verkoeijen, P. & Paas, F. Teaching on video as an instructional strategy to reduce confirmation bias—a pre-registered study. Instr. Sci. 49, 475–496 (2021).


Google Scholar
 

Rhodes, R. E. et al. Teaching decision making with serious games: an independent evaluation. Games Cult. 12, 233–251 (2017).


Google Scholar
 

Dwyer, C. P., Hogan, M. J. & Stewart, I. The effects of argument mapping-infused critical thinking instruction on reflective judgement performance. Think. Skills Creat. 16, 11–26 (2015).


Google Scholar
 

Sellier, A. L., Scopelliti, I. & Morewedge, C. K. Debiasing training improves decision making in the field. Psychol. Sci. 30, 1371–1379 (2019).

PubMed 

Google Scholar
 

Frederick, S. Cognitive reflection and decision making. J. Econ. Perspect. 19, 25–42 (2005).


Google Scholar
 

Dawson, T. L. Metacognition and Learning in Adulthood. Prepared in Response to Tasking from ODNI/CHCO/IC Leadership Development Office (Developmental Testing Service LLC, 2008).

Burgoyne, A. P., Mashburn, C. A., Tsukahara, J. S., Hambrick, D. Z. & Engle, R. W. Understanding the relationship between rationality and intelligence: a latent-variable approach. Think. Reason. 29, 1–42 (2023).


Google Scholar
 

Lectical reflective judgment assessment. LecticaLive https://lecticalive.org/about/lrja (2024).

Dunbar, N. E. et al. Implicit and explicit training in the mitigation of cognitive bias through the use of a serious game. Comput. Hum. Behav. 37, 307–318 (2014).


Google Scholar
 

Dunbar, N. E. et al. Mitigation of cognitive bias with a serious game: two experiments testing feedback timing and source. Int. J. Game Based Learn. 7, 86–100 (2017).


Google Scholar
 

Shaw, A. et al. Serious efforts at bias reduction: the effects of digital games and avatar customization on three cognitive biases. J. Media Psychol. 30, 16–28 (2018).


Google Scholar
 

Legaki, N.-Z., Karpouzis, K., Assimakopoulos, V. & Hamari, J. Gamification to avoid cognitive biases: an experiment of gamifying a forecasting course. Technol. Forecast. Soc. Change 167, 120725 (2021).


Google Scholar
 

Gutierrez, B. Fair Play: A Video Game Designed to Reduce Implicit Racial Bias (Univ. Wisconsin, 2013).

Lee, Y.-H. et al. Training anchoring and representativeness bias mitigation through a digital game. Simul. Gaming 47, 751–779 (2016).


Google Scholar
 

Roelle, J., Schmidt, E. M., Buchau, A. & Berthold, K. Effects of informing learners about the dangers of making overconfident judgments of learning. J. Educ. Psychol. 109, 99–117 (2017).


Google Scholar
 

van Peppen, L. M. et al. Learning to avoid biased reasoning: effects of interleaved practice and worked examples. J. Cogn. Psychol. 33, 304–326 (2021).


Google Scholar
 

Martínez, N., Rodríguez-Ferreiro, J., Barberia, I. & Matute, H. A debiasing intervention to reduce the causality bias in undergraduates: the role of a bias induction phase. Curr. Psychol. 42, 32456–32468 (2023).


Google Scholar
 

Evans, J. S. B. T. & Stanovich, K. E. Dual-process theories of higher cognition: advancing the debate. Perspect. Psychol. Sci. 8, 223–241 (2013).

PubMed 

Google Scholar
 

Alter, A. L., Oppenheimer, D. M., Epley, N. & Eyre, R. N. Overcoming intuition: metacognitive difficulty activates analytic reasoning. J. Exp. Psychol. Gen. 136, 569–576 (2007).

PubMed 

Google Scholar
 

Wisniewski, B., Zierer, K. & Hattie, J. The power of feedback revisited: a meta-analysis of educational feedback research. Front. Psychol. 10, 3087 (2019).

PubMed 

Google Scholar
 

Muehlhauser, L. New web app for calibration training. Open Philanthropy https://www.openphilanthropy.org/research/new-web-app-for-calibration-training/ (2018).

Swart, E. K., Nielen, T. M. J. & Sikkema-de Jong, M. T. Supporting learning from text: a meta-analysis on the timing and content of effective feedback. Educ. Res. Rev. 28, 100296 (2019).


Google Scholar
 

Chi, M. T. & Wylie, R. The ICAP Framework: linking cognitive engagement to active learning outcomes. Educ. Psychol. 49, 219–243 (2014).


Google Scholar
 

Tomcho, T. J. & Foels, R. Meta-analysis of group learning activities: empirically based teaching recommendations. Teach. Psychol. 39, 159–169 (2012).


Google Scholar
 

Noetel, M. et al. Video improves learning in higher education: a systematic review. Rev. Educ. Res. 91, 204–236 (2021).


Google Scholar
 

Noetel, M. et al. Multimedia design for learning: an overview of reviews with meta-meta-analysis. Rev. Educ. Res. 92, 413–454 (2022).


Google Scholar
 

Chernikova, O. et al. Simulation-based learning in higher education: a meta-analysis. Rev. Educ. Res. 90, 499–541 (2020).


Google Scholar
 

Ahmadi, A. et al. A classification system for teachers’ motivational behaviors recommended in self-determination theory interventions. J. Educ. Psychol. 115, 1158–1176 (2023).


Google Scholar
 

Bureau, J., Howard, J. L., Chong, J. X. Y. & Guay, F. Pathways to student motivation: a meta-analysis of antecedents of autonomous and controlled motivations. Rev. Educ. Res. 92, 46–72 (2022).

PubMed 

Google Scholar
 

Korteling, J. E. H., Gerritsma, J. Y. J. & Toet, A. Retention and transfer of cognitive bias mitigation interventions: a systematic literature study. Front. Psychol. 12, 629354 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Halpern, D. F. Teaching critical thinking for transfer across domains: disposition, skills, structure training, and metacognitive monitoring. Am. Psychol. 53, 449–455 (1998).

CAS 
PubMed 

Google Scholar
 

van Peppen, L. M., Verkoeijen, P. P. J. L., Heijltjes, A. E. G., Janssen, E. M. & van Gog, T. Enhancing students’ critical thinking skills: is comparing correct and erroneous examples beneficial? Instr. Sci. 49, 747–777 (2021).


Google Scholar
 

Tiruneh, D. T., Verburgh, A. & Elen, J. Effectiveness of critical thinking instruction in higher education: a systematic review of intervention studies. High. Educ. Stud. 4, 1–17 (2014).


Google Scholar
 

Willingham, D. T. in Critical Thinking: Why It Is So Hard to Teach? 8–19 (American Federation of Teachers, 2007).

Tversky, A. & Kahneman, D. Extensional versus intuitive reasoning: the conjunction fallacy in probability judgment. Psychol. Rev. 90, 293–315 (1983).


Google Scholar
 

McKenzie, C. R. M. Rational models as theories—not standards—of behavior. Trends Cogn. Sci. 7, 403–406 (2003).

PubMed 

Google Scholar
 

Szollosi, A. & Newell, B. R. People as intuitive scientists: reconsidering statistical explanations of decision making. Trends Cogn. Sci. 24, 1008–1018 (2020).

PubMed 

Google Scholar
 

Alexander, S. Confirmation bias as misfire of normal Bayesian reasoning. Slate Star Codex https://slatestarcodex.com/2020/02/12/confirmation-bias-as-misfire-of-normal-bayesian-reasoning/ (2020).

Abendroth, J. & Richter, T. How to understand what you don’t believe: metacognitive training prevents belief-biases in multiple text comprehension. Learn. Instr. 71, 101394 (2021).


Google Scholar
 

Sibbald, M. et al. Debiasing versus knowledge retrieval checklists to reduce diagnostic error in ECG interpretation. Adv. Health Sci. Educ. Theory Pract. 24, 427–440 (2019).

PubMed 

Google Scholar
 

Kyaw, B. M. et al. Virtual reality for health professions education: systematic review and meta-analysis by the digital health education collaboration. J. Med. Internet Res. 21, e12959 (2019).

PubMed 
PubMed Central 

Google Scholar
 

Schulz, K. F., Altman, D. G. & Moher, D. & CONSORT Group. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMC Med. 8, 18 (2010).

Cooper, H. & Cooper, H. M. Reporting Quantitative Research in Psychology: How to Meet APA Style Journal Article Reporting Standards (American Psychological Association, 2020).

Joy-Gaba, J. A. From Learning to Doing: The Effects of Educating Individuals on the Pervasiveness of Bias (Univ. Virginia, 2011).

Scopelliti, I. et al. Bias blind spot: structure, measurement, and consequences. Manage. Sci. 61, 2468–2486 (2015).


Google Scholar
 

Oeberst, A. & Imhoff, R. Toward parsimony in bias research: a proposed common framework of belief-consistent information processing for a set of biases. Perspect. Psychol. Sci. 18, 1464–1487 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Roth, S., Robbert, T. & Straus, L. On the sunk-cost effect in economic decision-making: a meta-analytic review. Bus. Res. 8, 99–138 (2015).


Google Scholar
 

Stanovich, K. E. & West, R. F. On the relative independence of thinking biases and cognitive ability. J. Pers. Soc. Psychol. 94, 672–695 (2008).

PubMed 

Google Scholar
 

Stanovich, K. E., West, R. F. & Toplak, M. E. Myside bias, rational thinking, and intelligence. Curr. Dir. Psychol. Sci. 22, 259–264 (2013).


Google Scholar
 

Aczel, B., Bago, B., Szollosi, A., Foldes, A. & Lukacs, B. Measuring individual differences in decision biases: methodological considerations. Front. Psychol. 6, 1770 (2015).

PubMed 
PubMed Central 

Google Scholar
 

Toplak, M. E. & Stanovich, K. E. Measuring rational thinking in adolescents: the assessment of rational thinking for youth (ART‐Y). J. Behav. Decis. Mak. 37, e2381 (2024).


Google Scholar
 

Kahneman, D. Thinking, Fast and Slow (Macmillan, 2011).

Di Battista, A., Grayling, S. & Hasselaar, E. Future of Jobs Report 2023 (World Economic Forum, 2023).

Fisher, D. J., Carpenter, J. R., Morris, T. P., Freeman, S. C. & Tierney, J. F. Meta-analytical methods to identify who benefits most from treatments: daft, deluded, or deft approach? Br. Med. J. 356, j573 (2017).


Google Scholar
 

Does debiasing training improve rationality? A systematic review and meta-analysis of randomised trials in educational settings. OSF https://osf.io/xrm4g (2022).

Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289–300 (1995).


Google Scholar
 

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int. J. Surg. 8, 336–341 (2010).

PubMed 

Google Scholar
 

Torgerson, C. J. & Torgerson, D. J. Randomised Trials in Education: An Introductory Handbook (Education Endowment Foundation, 2013).

Kuss, O., Blettner, M. & Börgermann, J. Propensity score: an alternative method of analyzing treatment effects. Dtsch. Arztebl. Int. 113, 597–603 (2016).

PubMed 
PubMed Central 

Google Scholar
 

Antognelli, S. L., Sharrock, M. J. & Newby, J. M. A randomised controlled trial of computerised interpretation bias modification for health anxiety. J. Behav. Ther. Exp. Psychiatry 66, 101518 (2020).

PubMed 

Google Scholar
 

Matute, H. et al. Illusions of causality: how they bias our everyday thinking and how they could be reduced. Front. Psychol. 6, 888 (2015).

PubMed 
PubMed Central 

Google Scholar
 

Sklad, M. & Diekstra, R. The development of the heuristics and biases scale (HBS). Procedia Soc. Behav. Sci. 112, 710–718 (2014).


Google Scholar
 

Thomson, K. S. & Oppenheimer, D. M. Investigating an alternate form of the cognitive reflection test. Judgm. Decis. Mak. 11, 99–113 (2016).


Google Scholar
 

Jacobson, D. et al. Improved learning in US history and decision competence with decision-focused curriculum. PLoS ONE 7, e45775 (2012).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hausner, E., Guddat, C., Hermanns, T., Lampert, U. & Waffenschmidt, S. Prospective comparison of search strategies for systematic reviews: an objective approach yielded higher sensitivity than a conceptual one. J. Clin. Epidemiol. 77, 118–124 (2016).

PubMed 

Google Scholar
 

EndNote (The EndNote Team, 2013).

Marshall, I. J., Noel-Storr, A., Kuiper, J., Thomas, J. & Wallace, B. C. Machine learning for identifying randomized controlled trials: an evaluation and practitioner’s guide. Res. Synth. Methods 9, 602–614 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Covidence Systematic Review Software (Veritas Health Innovation, 2023).

Pigott, T. D. & Polanin, J. R. Methodological guidance paper: high-quality meta-analysis in a systematic review. Rev. Educ. Res. 90, 24–46 (2020).


Google Scholar
 

Higgins, J. P. T. et al. Cochrane Handbook for Systematic Reviews of Interventions (Wiley, 2019).

Rohatgi, A. WebPlotDigitizer. https://automeris.io/WebPlotDigitizer/ (2022).

Sterne, J. A. C. et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. Br. Med. J. 366, l4898 (2019).


Google Scholar
 

Flemyng, E. et al. Using Risk of Bias 2 to assess results from randomised controlled trials: guidance from Cochrane. BMJ Evid. Based Med. 28, 260–266 (2023).

PubMed 

Google Scholar
 

Shea, B. J. et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. Br. Med. J. 358, j4008 (2017).


Google Scholar
 

Hedges, L. V. Distribution theory for Glass’s estimator of effect size and related estimators. J. Educ. Behav. Stat. 6, 107–128 (1981).


Google Scholar
 

Viechtbauer, W. The metafor package ver. 4.6-0. (2017).

R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. Introduction to Meta-Analysis (Wiley, 2011).

Schwarzer, G. meta: an R package for meta-analysis (ver. 7.0-0). R News 7, 40–45 (2007).

Mathur, M. B. & VanderWeele, T. J. New metrics for meta-analyses of heterogeneous effects. Stat. Med. 38, 1336–1342 (2019).

PubMed 

Google Scholar
 

Wickham, H. Ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).

Krzywinski, M. & Altman, N. Comparing samples—part II. Nat. Methods 11, 355–356 (2014).

CAS 

Google Scholar
 

Glickman, M. E., Rao, S. R. & Schultz, M. R. False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies. J. Clin. Epidemiol. 67, 850–857 (2014).

PubMed 

Google Scholar
 

Polanin, J. R. & Pigott, T. D. The use of meta-analytic statistical significance testing. Res. Synth. Methods 6, 63–73 (2015).

PubMed 

Google Scholar
 

Shaffer, J. Multiple hypothesis testing. Annu. Rev. Psychol. 46, 561–584 (1995).


Google Scholar
 

Hedges, L. V. & Vevea, J. In Publication Bias in Meta‐Analysis: Prevention, Assessment and Adjustments (eds Rothstein, H. R. et al.) (John Wiley & Sons, 2005).

Adame, B. J. Training in the mitigation of anchoring bias: a test of the consider-the-opposite strategy. Learn. Motiv. 53, 36–48 (2016).


Google Scholar
 

Schmalhofer, F. & Glavanov, D. Three components of understanding a programmer’s manual: verbatim, propositional, and situational representations. J. Mem. Lang. 25, 279–294 (1986).


Google Scholar
 

Almashat, S., Ayotte, B., Edelstein, B. & Margrett, J. Framing effect debiasing in medical decision making. Patient Educ. Couns. 71, 102–107 (2008).

PubMed 

Google Scholar
 

Barberia, I., Blanco, F., Cubillas, C. P. & Matute, H. Implementation and assessment of an intervention to debias adolescents against causal illusions. PLoS ONE 8, e71303 (2013).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Blanco, F., Matute, H. & Vadillo, A. M. Mediating role of activity level in the depressive realism effect. PLoS ONE 7, e46203 (2012).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Barberia, I., Tubau, E., Matute, H. & Rodríguez-Ferreiro, J. A short educational intervention diminishes causal illusions and specific paranormal beliefs in undergraduates. PLoS ONE 13, e0191907 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Díaz-Vilela, L. & Álvarez-González, C. J. Differences in paranormal beliefs across fields of study from a Spanish adaptation of Tobacyk’s RPBS. J. Parapsychol. 68, 405–421 (2004).


Google Scholar
 

Bessarabova, E. et al. Mitigating bias blind spot via a serious video game. Comput. Hum. Behav. 62, 452–466 (2016).


Google Scholar
 

Pronin, E., Lin, D. Y. & Ross, L. The bias blind spot: perceptions of bias in self versus others. Pers. Soc. Psychol. Bull. 28, 369–381 (2002).


Google Scholar
 

Botta, V. A. The Effect of Instructional Method on use of Heuristics and Statistics Comprehension (Georgia State Univ., 1998).

Bou Khalil, R., Sleilaty, G., Kassab, A. & Nemr, E. Decontextualisation for framing effect reduction. Clin. Teach. 19, 121–128 (2022).

PubMed 

Google Scholar
 

Toplak, M. E., West, R. F. & Stanovich, K. E. The Cognitive Reflection Test as a predictor of performance on heuristics-and-biases tasks. Mem. Cogn. 39, 1275–1289 (2011).


Google Scholar
 

Baron, J., Scott, S., Fincher, K. & Emlen Metz, S. Why does the Cognitive Reflection Test (sometimes) predict utilitarian moral judgment (and other things)? J. Appl. Res. Mem. Cogn. 4, 265–284 (2015).


Google Scholar
 

Clegg, B. A. et al. Effective mitigation of anchoring bias, projection bias, and representativeness bias from serious game-based training. Procedia Manuf. 3, 1558–1565 (2015).


Google Scholar
 

Rassin, E. Blindness to alternative scenarios in evidence evaluation. J. Investig. Psychol. Offender Profil. 7, 153–163 (2010).


Google Scholar
 

Wason, P. C. Reasoning about a rule. Q. J. Exp. Psychol. 20, 273–281 (1968).

CAS 
PubMed 

Google Scholar
 

Riggio, H. R. & Garcia, A. L. The power of situations: Jonestown and the fundamental attribution error. Teach. Psychol. 36, 108–112 (2009).


Google Scholar
 

Emory, B. & Luo, T. Metacognitive training and online community college students’ learning calibration and performance. Community Coll. J. Res. Pract. 46, 240–256 (2022).


Google Scholar
 

Morrison, J. R., Bol, L., Ross, S. M. & Watson, G. S. Paraphrasing and prediction with self-explanation as generative strategies for learning science principles in a simulation. Educ. Technol. Res. Dev. 63, 861–882 (2015).


Google Scholar
 

Fitterman-Harris, H. F. & Vander Wal, J. S. Weight bias reduction among first-year medical students: a quasi-randomized, controlled trial. Clin. Obes. 11, e12479 (2021).

PubMed 

Google Scholar
 

Lewis, R. J., Cash, T. F., Jacobi, L. & Bubb-Lewis, C. Prejudice toward fat people: the development and validation of the antifat attitudes test. Obes. Res. 5, 297–307 (1997).

CAS 
PubMed 

Google Scholar
 

Latner, J. D., O’Brien, K. S., Durso, L. E., Brinkman, L. A. & MacDonald, T. Weighing obesity stigma: the relative strength of different forms of bias. Int. J. Obes. 32, 1145–1152 (2008).

CAS 

Google Scholar
 

Greenwald, A. G., McGhee, D. E. & Schwartz, J. L. Measuring individual differences in implicit cognition: the implicit association test. J. Pers. Soc. Psychol. 74, 1464–1480 (1998).

CAS 
PubMed 

Google Scholar
 

Gagne, D. A. Evaluation of an Obesity Stigma Intervention in Reducing Implicit and Explicit Weight Bias (Saint Louis Univ., 2014).

Gutierrez, A. P. Enhancing the Calibration Accuracy of Adult Learners: A Multifaceted Intervention (Univ. Nevada, 2012).

Heijltjes, A., van Gog, T., Leppink, J. & Paas, F. Improving critical thinking: effects of dispositions and instructions oneconomics students’ reasoning skills. Learn. Instr. 29, 31–42 (2014).


Google Scholar
 

Fong, G. T., Krantz, D. H. & Nisbett, R. E. The effects of statistical training on thinking about everyday problems. Cogn. Psychol. 18, 253–292 (1986).


Google Scholar
 

De Neys, W. & Glumicic, T. Conflict monitoring in dual process theories of thinking. Cognition 106, 1248–1299 (2008).

PubMed 

Google Scholar
 

Tversky, A. & Kahneman, D. The framing of decisions and the psychology of choice. Science 211, 453–458 (1981).

CAS 
PubMed 

Google Scholar
 

Stanovich, K. E. in In Two Minds: Dual Processes and Beyond (ed. Evans, J.) Vol. 369, 55–88 (Oxford Univ. Press, 2009).

Evans, J. S. B. T. In two minds: dual-process accounts of reasoning. Trends Cogn. Sci. 7, 454–459 (2003).

PubMed 

Google Scholar
 

Huff, J. D. & Nietfeld, J. L. Using strategy instruction and confidence judgments to improve metacognitive monitoring. Metacogn. Learn. 4, 161–176 (2009).


Google Scholar
 

Pronin, E. & Kugler, M. B. Valuing thoughts, ignoring behavior: the introspection illusion as a source of the bias blind spot. J. Exp. Soc. Psychol. 43, 565–578 (2007).


Google Scholar
 

Kolić-Vehovec, S., Pahljina-Reinić, R. & Rončević Zubković, B. Effects of collaboration and informing students about overconfidence on metacognitive judgment in conceptual learning. Metacogn. Learn. 17, 87–116 (2022).


Google Scholar
 

Schraw, G. A conceptual analysis of five measures of metacognitive monitoring. Metacogn. Learn. 4, 33–45 (2009).


Google Scholar
 

Cox, C. & Mouw, J. T. Disruption of the representativeness heuristic: can we be perturbed into using correct probabilistic reasoning? Educ. Stud. Math. 23, 163–178 (1992).


Google Scholar
 

Legaki, N. Z. & Assimakopoulos, V. F-LaurelXP: a gameful learning experience in forecasting. In Proc. 2nd International GamiFIN Conference Vol. 2186 (CEUR, 2018).

Morsanyi, K., Handley, S. J. & Serpell, S. Making heads or tails of probability: An experiment with random generators. Br. J. Educ. Psychol. 83, 379–395 (2013).

PubMed 

Google Scholar
 

Fox, C. R. & Levav, J. Partition-edit-count: naive extensional reasoning in judgment of conditional probability. J. Exp. Psychol. Gen. 133, 626–642 (2004).

PubMed 

Google Scholar
 

Green, D. R. Probability Concepts in School Pupils Aged 11–16 Years (Loughborough Univ, 1982).

Onal, I. G. & Kumkale, G. T. Effectiveness of source‐monitoring training in reducing halo error and negativity bias in a performance appraisal setting. Appl. Psychol. 71, 1635–1653 (2022).

Martell, R. F. & Evans, D. P. Source-monitoring training: toward reducing rater expectancy effects in behavioral measurement. J. Appl. Psychol. 90, 956–963 (2005).

PubMed 

Google Scholar
 

Ramdass, D. H. Improving Fifth Grade Students’ Mathematics Self-Efficacy Calibration and Performance through Self -Regulation Training (City Univ. of New York, 2009).

Gertner, A., Zaromb, F., Schneider, R., Roberts, R. D. & Matthews, G. The assessment of biases in cognition: development and evaluation of an assessment instrument for the measurement of cognitive bias. MITRE Technical Report MTR160163 https://www.mitre.org/news-insights/publication/assessment-biases-cognition (2016).

Rodríguez-Ferreiro, J., Vadillo, M. A. & Barberia, I. Debiasing causal inferences: over and beyond suboptimal sampling. Teach. Psychol. 50, 230–236 (2023).

Matute, H., Yarritu, I. & Vadillo, M. A. Illusions of causality at the heart of pseudoscience. Br. J. Psychol. 102, 392–405 (2011).

PubMed 

Google Scholar
 

Rowland, K. Counselor Attributional Bias (Ball State Univ., 1981).

Storms, M. D. Videotape and the attribution process: reversing actors’ and observers’ points of view. J. Pers. Soc. Psychol. 27, 165–175 (1973).

CAS 
PubMed 

Google Scholar
 

Morton, T. A., Haslam, S. A., Postmes, T. & Ryan, M. K. We value what values us: the appeal of identity‐affirming science. Polit. Psychol. 27, 823–838 (2006).


Google Scholar
 

Scopelliti, I., Min, H. L., McCormick, E., Kassam, K. S. & Morewedge, C. K. Individual differences in correspondence bias: measurement, consequences, and correction of biased interpersonal attributions. Manag. Sci. 64, 1879–1910 (2018).


Google Scholar
 

Cook, M. B. & Smallman, H. S. Human factors of the confirmation bias in intelligence analysis: decision support from graphical evidence landscapes. Hum. Factors 50, 745–754 (2008).

PubMed 

Google Scholar
 

Silver, E. M. Cognitive Style as a Moderator Variable in Rater Training to Reduce Illusory Halo (Kansas State Univ., 1986).

Silver, E. M. Halo Bias, Implicit Personality Theory, and Cognitive Complexity: Possible Relationships and Implications for Improving the Psychometric Quality of Ratings (Kansas State Univ., 1982).

Swift, J. A. et al. Are anti-stigma films a useful strategy for reducing weight bias among trainee healthcare professionals? Results of a pilot randomized control trial. Obes. Facts 6, 91–102 (2013).

PubMed 
PubMed Central 

Google Scholar
 

Allison, D. B., Basile, V. C. & Yuker, H. E. The measurement of attitudes toward and beliefs about obese persons. Int. J. Eat. Disord. 10, 599–607 (1991).


Google Scholar
 

Crandall, C. S. Prejudice against fat people: ideology and self-interest. J. Pers. Soc. Psychol. 66, 882–894 (1994).

CAS 
PubMed 

Google Scholar
 

Testa, I. et al. Effects of instruction on students’ overconfidence in introductory quantum mechanics. Phys. Rev. Phys. Educ. Res. 16, 010143 (2020).


Google Scholar
 

Boone, W. J., Staver, J. R. & Yale, M. S. Rasch Analysis in the Human Sciences (Springer, 2016).

Van Bockstaele, B., van der Molen, M. J., van Nieuwenhuijzen, M. & Salemink, E. Modification of hostile attribution bias reduces self-reported reactive aggressive behavior in adolescents. J. Exp. Child Psychol. 194, 104811 (2020).

PubMed 

Google Scholar
 

Houtkamp, E. O., van der Molen, M. J., de Voogd, E. L., Salemink, E. & Klein, A. M. The relation between social anxiety and biased interpretations in adolescents with mild intellectual disabilities. Res. Dev. Disabil. 67, 94–98 (2017).

PubMed 

Google Scholar
 

Snyder, M. & Swann, W. B. Hypothesis-testing processes in social interaction. J. Pers. Soc. Psychol. 36, 1202–1212 (1978).


Google Scholar
 

West, R. F., Toplak, M. E. & Stanovich, K. E. Heuristics and biases as measures of critical thinking: associations with cognitive ability and thinking dispositions. J. Educ. Psychol. 100, 930–941 (2008).


Google Scholar
 

Stanovich, K. E. Rationality and the Reflective Mind (Oxford Univ. Press, 2011).

Stanovich, K. E. & West, R. F. Individual differences in reasoning: implications for the rationality debate? Behav. Brain Sci. 23, 645–665 (2000).

CAS 
PubMed 

Google Scholar
 

Veinott, E. S. et al. The effect of camera perspective and session duration on training decision making in a serious video game. In International Games Innovation Conference (IEEE, 2013).

Whitaker, E. et al. The effectiveness of intelligent tutoring on training in a video game: an experiment in student modeling with worked-out examples for serious games. In International Games Innovation Conference (IEEE, 2013).