Elshamy, I. A. et al. Recent advances in Kaempferia phytochemistry and biological activity: A comprehensive review. Nutrients 11, 2396. https://doi.org/10.3390/nu11102396 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hashiguchi, A., Thawtar, S. M., Duangsodsri, T., Kusano, M. & Watanabe, N. K. Biofunctional properties and plant physiology of Kaempferia spp.: status and trends. J. Funct. Foods. 92, 105029. https://doi.org/10.1016/j.jff.2022.105029 (2022).

Article 
CAS 

Google Scholar
 

Singh, A. et al. The industrially important genus Kaempferia: an ethnopharmacological review. Front. Pharmacol. 14, 1099523. https://doi.org/10.3389/fphar.2023.1099523 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, M. et al. Quercetin 3,5,7,3’,4’-pentamethyl ether from Kaempferia parviflora directly and effectively activates human SIRT1. Commun. Biol. 4, 209. https://doi.org/10.1038/s42003-021-01705-1 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Amuamuta, A., Plengsuriyakarn, T. & Na-Bangchang, K. Anticholangiocarcinoma activity and toxicity of the Kaempferia Galanga linn. Rhizome ethanolic extract. BMC Complement. Altern. Med. 17, 213. https://doi.org/10.1186/s12906-017-1713-4 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Atun, S., Arianingrum, R., Sulistyowati, E. & Aznam, N. Isolation and antimutagenic activity of some Flavanone compounds from Kaempferia rotunda. IJCAAS 4 (1), 3–8. https://doi.org/10.1016/j.ijcas.2013.03.004 (2013).

Article 

Google Scholar
 

Panyakaew, J. et al. Chemical variation and potential of Kaempferia oils as larvicide against Aedes aegypti. J. Essent. Oil-Bear Plants. 20 (4), 1044–1056. https://doi.org/10.1080/0972060X.2017.1377114 (2017).

Article 
CAS 

Google Scholar
 

Pham, N. K., Nguyen, H. T. & Nguyen, Q. B. A review on the ethnomedicinal uses, phytochemistry and Pharmacology of plant species belonging to Kaempferia L. genus (Zingiberaceae). Pharm. Sci. Asia. 48, 1–24. https://doi.org/10.29090/psa.2021.01.19.070 (2021).

Article 
CAS 

Google Scholar
 

Picheansoonthon, C. & Koonterm, S. Notes on the genus Kaempferia L. (Zingiberaceae) in Thailand. J. Thai Tradit Altern. Med. 6 (1), 73–93 (2008).


Google Scholar
 

Labrooy, C. D., Abdullah, T. L. & Stanslas, J. Identification of ethnomedicinally important Kaempferia L. (Zingiberaceae) species based on morphological traits and suitable DNA region. Curr. Plant. Biol. 14, 50–55. https://doi.org/10.1016/j.cpb.2018.09.004 (2018).

Article 

Google Scholar
 

Sulaiman, S. F., Ooi, K. L. & Othman, A. S. Utility of DNA barcoding for identifying Zingiberaceae species in Malaysia. Biochem. Syst. Ecol. 85, 103911. https://doi.org/10.1016/j.bse.2019.103911 (2019).

Article 
CAS 

Google Scholar
 

Wongsa, N., Gritsanapan, W. & Ampasavate, C. Volatile oil profiling of Kaempferia species by GC-MS and their larvicidal activities. J. Essent. Oil Res. 33 (1), 1–10. https://doi.org/10.1080/10412905.2020.1801243 (2021).

Article 

Google Scholar
 

Khodadadi, M. & Pourfarzam, M. A review of strategies for untargeted urinary metabolomic analysis using GC–MS. Anal. Bioanal Chem. 412 (20), 4551–4566. https://doi.org/10.1007/s00216-020-02709-2 (2020).

Article 
CAS 

Google Scholar
 

Thawtar, M. S. et al. Exploring volatile organic compounds in rhizomes and leaves of Kaempferia parviflora wall. Ex Baker using HSSPME and GCTOF/MS combined with multivariate analysis. Metabolites 13 (5), 651. https://doi.org/10.3390/metabo13050651( (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Alberts, P. S. F. & Meyer, J. J. M. Integrating chemotaxonomic-based metabolomics data with DNA barcoding for plant identification: A case study on south-east African erythroxylaceae species. South. Afr. J. Bot. 146, 174–186. https://doi.org/10.1016/j.sajb.2021.10.005 (2022).

Article 
CAS 

Google Scholar
 

Cheng, Z. et al. From folk taxonomy to species confirmation of Acorus (Acoraceae): evidences based on phylogenetic and metabolomic analyses. Front. Plant. Sci. 11, 965. https://doi.org/10.3389/fpls.2020.00965 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kiran, R. K. et al. Untargeted metabolomics and DNA barcoding for discrimination of Phyllanthus species. J. Ethnopharmacol. 273, 113928. https://doi.org/10.1016/j.jep.2021.113928 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Zhang, X. et al. Integrating morphology, molecular phylogeny and chemotaxonomy for the most effective authentication in Chinese Rubia with insights into origin and distribution of characteristic rubiaceae-type cyclopeptides. Ind. Crops Prod. 191, 115775. https://doi.org/10.1016/j.indcrop.2022.115775 (2023).

Article 
CAS 

Google Scholar
 

Raclariu, C. A. et al. What’s in the box? Authentication of Echinacea herbal products using DNA metabarcoding and HPTLC. Phytomedicine 44, 32–38. https://doi.org/10.1016/j.phymed.2018.03.058 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Schimming, T. et al. Calystegines as chemotaxonomic markers in the convolvulaceae. Phytochemistry 66 (4), 469–480. https://doi.org/10.1016/j.phytochem.2004.12.024 (2005).

Article 
CAS 
PubMed 

Google Scholar
 

Anh Van, C., Duc, D. X. & Son, N. T. Kaempferia diterpenoids and flavonoids: an overview on phytochemistry, biosynthesis, synthesis, pharmacology, and pharmacokinetics. Med. Chem. Res. 33 (1), 1–20. https://doi.org/10.1007/s00044-023-03169-w (2024).

Article 
CAS 

Google Scholar
 

Ma, A. & Qi, X. Mining plant metabolomes: methods, applications, and perspectives. Plant. Commun. 2 (5), 100238. https://doi.org/10.1016/j.xplc.2021.100238 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tansawat, R. et al. Metabolomics approach to identify key volatile aromas in Thai colored rice cultivars. Front. Plant. Sci. 14, 973217. https://doi.org/10.3389/fpls.2023.973217 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Harborne, A. J. & Phytochemical Methods A Guide To Modern Techniques of Plant Analysis (Chapman & Hall, 1998).

Wink, M. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochem 64 (1), 3–19. https://doi.org/10.1016/S0031-9422(03)00300-5 (2003).

Article 
CAS 

Google Scholar
 

Soltis, D. E. & Soltis, P. S. Applying the bootstrap in phylogeny reconstruction. Stat. Sci. 18 (2), 256–267. https://doi.org/10.1214/ss/1063994980 (2003).

Article 
MathSciNet 
MATH 

Google Scholar
 

Kress, W. J., Wurdack, K. J., Zimmer, E. A., Weigt, L. A. & Janzen, D. H. Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sci. USA. 102 (23), 8369–8374. https://doi.org/10.1073/pnas.0503123102 (2005).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dunn, W. B. et al. Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics 9 (1), 44–66. https://doi.org/10.1007/s11306-012-0434-4 (2013).

Article 
CAS 

Google Scholar
 

Patti, G. J., Yanes, O. & Siuzdak, G. Metabolomics: the apogee of the omics trilogy. Nat. Rev. Mol. Cell. Biol. 13 (4), 263–269. https://doi.org/10.1038/nrm3314 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Peters, K., BlattJanmaat, K. L., Tkach, N., van Dam, N. M. & Neumann, S. Untargeted metabolomics for integrative taxonomy: metabolomics, DNA markerbased sequencing, and phenotype bioimaging. Plants 12 (4), 881. https://doi.org/10.3390/plants12040881 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wongsuwan, P., Phokham, B., Rattanakrajang, P., Picheansoonthon, C. & Sukrong, S. Kaempferia chonburiensis (Zingiberaceae), a new species from Thailand based on morphological and molecular evidence. PeerJ 13, e18948. https://doi.org/0.7717/peerj.18948 (2025).

PubMed 
PubMed Central 

Google Scholar
 

Techaprasan, J., Klinbunga, S., Ngamriabsakul, C. & Jenjittikul, T. Genetic variation of Kaempferia (Zingiberaceae) in Thailand based on Chloroplast DNA (psbA-trnH and petA-psbJ) sequences. Genet. Mol. Res. 9 (4), 1957–1973. https://doi.org/10.4238/vol9-4gmr873 (2010).

Article 
CAS 
PubMed 

Google Scholar
 

Jenjittikul, T., Nopporncharoenkul, N. & Ruchisansakun, S. Kaempferia L. In: (eds Zingiberaceae, M. F., Sangvirotjanapat, S., Chayamarit, K. & Balslev, H.) In: Flora of Thailand Chayamarit, K. & Balslev, H. 16 (2), 611–641 (The Forest Herbarium, Bangkok, (2023).


Google Scholar
 

Tungphatthong, C., Urumarudappa, J. K. S., Awachai, S., Sooksawate, T. & Sukrong, S. Differentiation of Mitragyna speciosa, a narcotic plant, from allied Mitragyna species using DNA barcoding–high–resolution melting (Bar–HRM) analysis. Sci. Rep. 11, 6738. https://doi.org/10.1038/s41598-021-86228-9 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Assanangkornchai, S., Muekthong, A., Sam-Angsri, N. & Pattanasattayawong, U. The use of Mitragynine speciosa (Krathom), an addictive plant, in Thailand. Subst. Use Misuse. 42, 2145–2157 (2007).

PubMed 

Google Scholar
 

Kress, W. J., Prince, L. M. & Williams, K. J. The phylogeny and a new classification of the gingers (Zingiberaceae): evidence from molecular data. Am. J. Bot. 89 (10), 1682–1696. https://doi.org/10.3732/ajb.89.10.1682 (2002).

Article 
CAS 
PubMed 

Google Scholar
 

Nopporncharoenkul, N., Soontornchainaksaeng, P., Jenjittikul, T., Chuenboonngarm, N. & Viboonjun, U. Kaempferia simaoensis (Zingiberaceae), a new record for thailand: evidence from nuclear ITS2 sequence analyses. Thai J. Bot. 8, 81–91 (2016).


Google Scholar
 

Osathanunkul, M. et al. Evaluation of suitable DNA regions for molecular identification of high value medicinal plants in genus Kaempferia. Nucleosides Nucleotides Nucleic Acids. 36 (12), 726–735. https://doi.org/10.1080/15257770.2017.1391393 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Techaprasan, J. & Leong-Sˇkornicˇkova, J. Transfer of Kaempferia Candida to Curcuma (Zingiberaceae) based on morphological and molecular data. Nord J. Bot. 29, 773–779. https://doi.org/10.1111/j.1756-1051.2011.00970.x (2011).

Article 

Google Scholar
 

Barbosa, G. B. et al. From common to rare Zingiberaceae plants – A metabolomics study using GC-MS. Phytochemistry 140, 141–150. https://doi.org/10.1016/j.phytochem.2017.05.002 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Endara, M. J. et al. Chemocoding as an identification tool where morphological- and DNA-based methods fall short: Inga as a case study. New. Phytol. 218, 847–858. https://doi.org/10.1111/nph.15020 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Liu, K. et al. Novel Approach to Classify Plants Based on Metabolite-Content Similarity. Biomed. Res. Int. 5296729. (2017). https://doi.org/10.1155/2017/5296729 (2017).

van Brederode, J. et al. The terpenoids myrtenol and verbenol act on delta subunit-containing GABAA receptors and enhance tonic Inhibition in dentate gyrus granule cells. Neurosci. Lett. 628, 91–97. https://doi.org/10.1016/j.neulet.2016.06.027 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Khaiper, M. et al. Chemical composition, antifungal and antioxidant properties of seasonal variation in Eucalyptus Tereticornis leaves of essential oil. Ind. Crops Prod. 222, 119669. https://doi.org/10.1016/j.indcrop.2024.119669 (2024).

Article 
CAS 

Google Scholar
 

Petrovi´c, J. et al. Individual stereoisomers of verbenol and verbenone express bioactive features. J. Mol. Struct. 1251, 131999. https://doi.org/10.1016/j.molstruc.2021.131999 (2022).

Article 
CAS 

Google Scholar
 

Piao, J., Lim, S. S., Kim, H. H., Lee, S. Y. & Park, S. U. Analysis of volatile compounds from three species of Atractylodes by gas chromatography-mass spectrometry. J. Aridland Agric. 7, 68–75. https://doi.org/10.25081/jaa.2021.v7.7019 (2021).

Article 

Google Scholar
 

Baharum, N. S., Bunawan, H., Ghani, A., Ma’aruf, Mustapha, W. A. W. & Noor, M. N. Analysis of the chemical composition of the essential oil of Polygonum minus huds. Using two-dimensional gas chromatography-time-of-flight mass spectrometry (GC-TOF MS). Molecules 15, 7006–7015. https://doi.org/10.3390/molecules15107006 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kang, W. Y., Ji, Z. Q. & Wang, J. M. Composition of the essential oil of Adiantum flabellulatum. Chem. Nat. Compd. 45, 575–577. https://doi.org/10.1007/s10600-009-9371-5 (2009).

Article 
CAS 

Google Scholar
 

Dessy, V. J., Sivakumar, S. R., George, M. & Francis, S. GC–MS analysis of bioactive compounds present in different extracts of rhizome of Curcuma aeruginosa Roxb. J. Drug Deliv Ther. 9 (2-s), 13–19. https://doi.org/10.22270/jddt.v9i2-s.2589 (2019).

Article 
CAS 

Google Scholar
 

Hieu, T. T. et al. Chemical composition of the volatile oil from the leaves of Kaempferia champasakensis picheans. J. Essent. Oil Bear. Plants. 26 (1), 108–114. https://doi.org/10.1080/0972060X.2022.2161325 (2023). Koonterm. (Zingiberaceae.

Article 
CAS 

Google Scholar
 

Zhang, Y. al. Widely Targeted Volatilomics and Metabolomics Analysis Reveal the Metabolic Composition and Diversity of Zingiberaceae Plants. Metabolites 13, 700. https://doi.org/10.3390/metabo13060700 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yu, C. W. et al. H.-C. Essential oil Alloaromadendrene from mixed-type Cinnamomum osmophloeum leaves prolongs the lifespan in Caenorhabditis elegans. J. Agric. Food Chem. 62 (26), 6159–6165. https://doi.org/10.1021/jf500417y (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Moreira, C. I., Lago, G. H. J., Young, M. C. M. & Roque, F. N. Antifungal aromadendrane sesquiterpenoids from the leaves of Xylopia Brasiliensis. J. Braz Chem. Soc. 14, 828–831. https://doi.org/10.1590/S0103-50532003000500020 (2003).

Article 
CAS 

Google Scholar
 

Bukvicki, R. D. Assessment of the chemical composition and in vitro antimicrobial potential of extracts of the liverwort Scapania aspera. Nat. Prod. Commun. 8, 1313–1316 (2013).

CAS 
PubMed 

Google Scholar
 

De tommasi, N., Pizza, C. C., Orsi, N. & Stein, M. L. Structure and in vitro antiviral activity of sesquiterpene glycosides from Calendula arvensis. J. Nat. Prod. 53, 830–835. https://doi.org10.1021/np50070a009 (1990).

Masser, A. et al. Defensive role of tropical tree resins: antitermitic sesquiterpenes from Southeast Asian Dipterocarpaceae. J. Chem. Ecol. 16, 3333–3352 (1990).


Google Scholar
 

Phongmaykin, J., Kumamoto, T., Ishikawa, T., Suttisri, R. & Saifah, E. A new sesquiterpene and other terpenoid constituents of Chisocheton penduliflorus. Arch. Pharm. Res. 31, 21–27. https://doi.org10.1007/s12272-008-1115-8 (2008).

Mustafa, K. H. et al. Phytochemical profile and antifungal activity of essential oils obtained from different Mentha longifolia L. accessions growing wild in Iran and Iraq. BMC Plant. Biol. 24, 461. https://doi.org/10.1186/s12870-024-05135-z (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sirilertpanich, P. Metabolomics study on the main volatile components of Thai colored rice cultivars from different agricultural locations. Food Chem. 434, 137424. https://doi.org/10.1016/j.foodchem.2023.137424 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Andriyas, T. et al. Integrating Spatial mapping and metabolomics: A novel platform for bioactive compound discovery and saline land reclamation. Comput. Struct. Biotechnol. J. 27, 1741–1753. https://doi.org/10.1016/j.csbj.2025.04.035 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dechbumroong, P., Aumnouypol, S., Denduangboripant, J. & Sukrong, S. DNA barcoding of Aristolochia plants and development of species-specific multiplex PCR to aid HPTLC in ascertainment of Aristolochia herbal materials. PLoS ONE. 13 (8), e0202625. https://doi.org/10.1371/journal.pone.0202625 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pichetkun, V., Gaewtongliam, S., Wiwatcharakornkul, W. & Sukrong, S. Combining DNA and HPTLC profiles to differentiate a pain relief herb, Mallotus repandus, from plants sharing the same common name, Kho-Khlan. PLoS ONE. 17 (6), e0268680. https://doi.org/10.1371/journal.pone.0268680 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Viraporn, V. et al. Correlation of Camptothecin-producing ability and phylogenetic relationship in the genus Ophiorrhiza. Planta Med. 77, 759–764. https://doi.org/10.1055/s-0030-1250568 (2011).

Article 
CAS 
PubMed 

Google Scholar
 

Nopporncharoenkul, N. et al. Cytotaxonomy of Kaempferia subg. Protanthium (Zingiberaceae) supports a new limestone species endemic to Thailand. Willdenowia 54 (2), 121–149. https://doi.org/10.3372/wi.54.54201 (2024).

Article 

Google Scholar
 

Saensouk, P., Saensouk, S. & Boonma, T. Two new species of Kaempferia subgenus Kaempferia (Zingiberaceae: Zingibereae) from Thailand. Biodiversitas 23 (8), 4343–4354. https://doi.org/10.13057/biodiv/d230860 (2022).

Article 

Google Scholar
 

Levin, R. A. et al. Family-level relationships of Onagraceae based on Chloroplast rbcL and ndhF data. Am. J. Bot. 90 (1), 107–115. https://doi.org/10.3732/ajb.90.1.107 (2003).

Article 
CAS 
PubMed 

Google Scholar
 

Ohi-Toma, T. et al. Molecular phylogeny of Aristolochia sensu Lato (Aristolochiaeae) based on sequences of rbcL, matK, and phyA genes, with special reference to differentiation of chromosome numbers. Syst. Bot. 31 (3), 481–492. https://doi.org/10.1043/05-38.1 (2006).

Article 

Google Scholar
 

Sang, T., Crawford, D., Stuessy, T. & Chloroplast, D. N. A. phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am. J. Bot. 84 (8), 1120 (1997).

CAS 
PubMed 

Google Scholar
 

Tu, X. Effects of four drying methods on Amomum villosum lour. ‘Guiyan1’ volatile organic compounds analyzed via headspace solid phase Microextraction and gas chromatography-mass spectrometry coupled with OPLS-DA. RSC Adv. 12, 26485–26496. https://doi.org/10.1039/d2ra04592c (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liu, Q. Essential oil composition of Curcuma species and drugs from Asia analyzed by headspace solid-phase Microextraction coupled with gas chromatography-mass spectrometry. J. Nat. Med. 77, 152–172. https://doi.org/10.1007/s11418-022-01658-7 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Pang, Z. et al. MetaboAnalyst 6.0: towards a unified platform for metabolomics data processing, analysis and interpretation. Nucleic Acids Res. 52, W398–406. https://doi.org/10.1093/nar/gkae253 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
Â