Elshamy, I. A. et al. Recent advances in Kaempferia phytochemistry and biological activity: A comprehensive review. Nutrients 11, 2396. https://doi.org/10.3390/nu11102396 (2019).
Hashiguchi, A., Thawtar, S. M., Duangsodsri, T., Kusano, M. & Watanabe, N. K. Biofunctional properties and plant physiology of Kaempferia spp.: status and trends. J. Funct. Foods. 92, 105029. https://doi.org/10.1016/j.jff.2022.105029 (2022).
Singh, A. et al. The industrially important genus Kaempferia: an ethnopharmacological review. Front. Pharmacol. 14, 1099523. https://doi.org/10.3389/fphar.2023.1099523 (2023).
Zhang, M. et al. Quercetin 3,5,7,3’,4’-pentamethyl ether from Kaempferia parviflora directly and effectively activates human SIRT1. Commun. Biol. 4, 209. https://doi.org/10.1038/s42003-021-01705-1 (2021).
Amuamuta, A., Plengsuriyakarn, T. & Na-Bangchang, K. Anticholangiocarcinoma activity and toxicity of the Kaempferia Galanga linn. Rhizome ethanolic extract. BMC Complement. Altern. Med. 17, 213. https://doi.org/10.1186/s12906-017-1713-4 (2017).
Atun, S., Arianingrum, R., Sulistyowati, E. & Aznam, N. Isolation and antimutagenic activity of some Flavanone compounds from Kaempferia rotunda. IJCAAS 4 (1), 3–8. https://doi.org/10.1016/j.ijcas.2013.03.004 (2013).
Panyakaew, J. et al. Chemical variation and potential of Kaempferia oils as larvicide against Aedes aegypti. J. Essent. Oil-Bear Plants. 20 (4), 1044–1056. https://doi.org/10.1080/0972060X.2017.1377114 (2017).
Pham, N. K., Nguyen, H. T. & Nguyen, Q. B. A review on the ethnomedicinal uses, phytochemistry and Pharmacology of plant species belonging to Kaempferia L. genus (Zingiberaceae). Pharm. Sci. Asia. 48, 1–24. https://doi.org/10.29090/psa.2021.01.19.070 (2021).
Picheansoonthon, C. & Koonterm, S. Notes on the genus Kaempferia L. (Zingiberaceae) in Thailand. J. Thai Tradit Altern. Med. 6 (1), 73–93 (2008).
Labrooy, C. D., Abdullah, T. L. & Stanslas, J. Identification of ethnomedicinally important Kaempferia L. (Zingiberaceae) species based on morphological traits and suitable DNA region. Curr. Plant. Biol. 14, 50–55. https://doi.org/10.1016/j.cpb.2018.09.004 (2018).
Sulaiman, S. F., Ooi, K. L. & Othman, A. S. Utility of DNA barcoding for identifying Zingiberaceae species in Malaysia. Biochem. Syst. Ecol. 85, 103911. https://doi.org/10.1016/j.bse.2019.103911 (2019).
Wongsa, N., Gritsanapan, W. & Ampasavate, C. Volatile oil profiling of Kaempferia species by GC-MS and their larvicidal activities. J. Essent. Oil Res. 33 (1), 1–10. https://doi.org/10.1080/10412905.2020.1801243 (2021).
Khodadadi, M. & Pourfarzam, M. A review of strategies for untargeted urinary metabolomic analysis using GC–MS. Anal. Bioanal Chem. 412 (20), 4551–4566. https://doi.org/10.1007/s00216-020-02709-2 (2020).
Thawtar, M. S. et al. Exploring volatile organic compounds in rhizomes and leaves of Kaempferia parviflora wall. Ex Baker using HSSPME and GCTOF/MS combined with multivariate analysis. Metabolites 13 (5), 651. https://doi.org/10.3390/metabo13050651( (2023).
Alberts, P. S. F. & Meyer, J. J. M. Integrating chemotaxonomic-based metabolomics data with DNA barcoding for plant identification: A case study on south-east African erythroxylaceae species. South. Afr. J. Bot. 146, 174–186. https://doi.org/10.1016/j.sajb.2021.10.005 (2022).
Cheng, Z. et al. From folk taxonomy to species confirmation of Acorus (Acoraceae): evidences based on phylogenetic and metabolomic analyses. Front. Plant. Sci. 11, 965. https://doi.org/10.3389/fpls.2020.00965 (2020).
Kiran, R. K. et al. Untargeted metabolomics and DNA barcoding for discrimination of Phyllanthus species. J. Ethnopharmacol. 273, 113928. https://doi.org/10.1016/j.jep.2021.113928 (2021).
Zhang, X. et al. Integrating morphology, molecular phylogeny and chemotaxonomy for the most effective authentication in Chinese Rubia with insights into origin and distribution of characteristic rubiaceae-type cyclopeptides. Ind. Crops Prod. 191, 115775. https://doi.org/10.1016/j.indcrop.2022.115775 (2023).
Raclariu, C. A. et al. What’s in the box? Authentication of Echinacea herbal products using DNA metabarcoding and HPTLC. Phytomedicine 44, 32–38. https://doi.org/10.1016/j.phymed.2018.03.058 (2018).
Schimming, T. et al. Calystegines as chemotaxonomic markers in the convolvulaceae. Phytochemistry 66 (4), 469–480. https://doi.org/10.1016/j.phytochem.2004.12.024 (2005).
Anh Van, C., Duc, D. X. & Son, N. T. Kaempferia diterpenoids and flavonoids: an overview on phytochemistry, biosynthesis, synthesis, pharmacology, and pharmacokinetics. Med. Chem. Res. 33 (1), 1–20. https://doi.org/10.1007/s00044-023-03169-w (2024).
Ma, A. & Qi, X. Mining plant metabolomes: methods, applications, and perspectives. Plant. Commun. 2 (5), 100238. https://doi.org/10.1016/j.xplc.2021.100238 (2021).
Tansawat, R. et al. Metabolomics approach to identify key volatile aromas in Thai colored rice cultivars. Front. Plant. Sci. 14, 973217. https://doi.org/10.3389/fpls.2023.973217 (2023).
Harborne, A. J. & Phytochemical Methods A Guide To Modern Techniques of Plant Analysis (Chapman & Hall, 1998).
Wink, M. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochem 64 (1), 3–19. https://doi.org/10.1016/S0031-9422(03)00300-5 (2003).
Soltis, D. E. & Soltis, P. S. Applying the bootstrap in phylogeny reconstruction. Stat. Sci. 18 (2), 256–267. https://doi.org/10.1214/ss/1063994980 (2003).
Kress, W. J., Wurdack, K. J., Zimmer, E. A., Weigt, L. A. & Janzen, D. H. Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sci. USA. 102 (23), 8369–8374. https://doi.org/10.1073/pnas.0503123102 (2005).
Dunn, W. B. et al. Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics 9 (1), 44–66. https://doi.org/10.1007/s11306-012-0434-4 (2013).
Patti, G. J., Yanes, O. & Siuzdak, G. Metabolomics: the apogee of the omics trilogy. Nat. Rev. Mol. Cell. Biol. 13 (4), 263–269. https://doi.org/10.1038/nrm3314 (2012).
Peters, K., BlattJanmaat, K. L., Tkach, N., van Dam, N. M. & Neumann, S. Untargeted metabolomics for integrative taxonomy: metabolomics, DNA markerbased sequencing, and phenotype bioimaging. Plants 12 (4), 881. https://doi.org/10.3390/plants12040881 (2023).
Wongsuwan, P., Phokham, B., Rattanakrajang, P., Picheansoonthon, C. & Sukrong, S. Kaempferia chonburiensis (Zingiberaceae), a new species from Thailand based on morphological and molecular evidence. PeerJ 13, e18948. https://doi.org/0.7717/peerj.18948 (2025).
Techaprasan, J., Klinbunga, S., Ngamriabsakul, C. & Jenjittikul, T. Genetic variation of Kaempferia (Zingiberaceae) in Thailand based on Chloroplast DNA (psbA-trnH and petA-psbJ) sequences. Genet. Mol. Res. 9 (4), 1957–1973. https://doi.org/10.4238/vol9-4gmr873 (2010).
Jenjittikul, T., Nopporncharoenkul, N. & Ruchisansakun, S. Kaempferia L. In: (eds Zingiberaceae, M. F., Sangvirotjanapat, S., Chayamarit, K. & Balslev, H.) In: Flora of Thailand Chayamarit, K. & Balslev, H. 16 (2), 611–641 (The Forest Herbarium, Bangkok, (2023).
Tungphatthong, C., Urumarudappa, J. K. S., Awachai, S., Sooksawate, T. & Sukrong, S. Differentiation of Mitragyna speciosa, a narcotic plant, from allied Mitragyna species using DNA barcoding–high–resolution melting (Bar–HRM) analysis. Sci. Rep. 11, 6738. https://doi.org/10.1038/s41598-021-86228-9 (2021).
Assanangkornchai, S., Muekthong, A., Sam-Angsri, N. & Pattanasattayawong, U. The use of Mitragynine speciosa (Krathom), an addictive plant, in Thailand. Subst. Use Misuse. 42, 2145–2157 (2007).
Kress, W. J., Prince, L. M. & Williams, K. J. The phylogeny and a new classification of the gingers (Zingiberaceae): evidence from molecular data. Am. J. Bot. 89 (10), 1682–1696. https://doi.org/10.3732/ajb.89.10.1682 (2002).
Nopporncharoenkul, N., Soontornchainaksaeng, P., Jenjittikul, T., Chuenboonngarm, N. & Viboonjun, U. Kaempferia simaoensis (Zingiberaceae), a new record for thailand: evidence from nuclear ITS2 sequence analyses. Thai J. Bot. 8, 81–91 (2016).
Osathanunkul, M. et al. Evaluation of suitable DNA regions for molecular identification of high value medicinal plants in genus Kaempferia. Nucleosides Nucleotides Nucleic Acids. 36 (12), 726–735. https://doi.org/10.1080/15257770.2017.1391393 (2017).
Techaprasan, J. & Leong-Sˇkornicˇkova, J. Transfer of Kaempferia Candida to Curcuma (Zingiberaceae) based on morphological and molecular data. Nord J. Bot. 29, 773–779. https://doi.org/10.1111/j.1756-1051.2011.00970.x (2011).
Barbosa, G. B. et al. From common to rare Zingiberaceae plants – A metabolomics study using GC-MS. Phytochemistry 140, 141–150. https://doi.org/10.1016/j.phytochem.2017.05.002 (2017).
Endara, M. J. et al. Chemocoding as an identification tool where morphological- and DNA-based methods fall short: Inga as a case study. New. Phytol. 218, 847–858. https://doi.org/10.1111/nph.15020 (2018).
Liu, K. et al. Novel Approach to Classify Plants Based on Metabolite-Content Similarity. Biomed. Res. Int. 5296729. (2017). https://doi.org/10.1155/2017/5296729 (2017).
van Brederode, J. et al. The terpenoids myrtenol and verbenol act on delta subunit-containing GABAA receptors and enhance tonic Inhibition in dentate gyrus granule cells. Neurosci. Lett. 628, 91–97. https://doi.org/10.1016/j.neulet.2016.06.027 (2016).
Khaiper, M. et al. Chemical composition, antifungal and antioxidant properties of seasonal variation in Eucalyptus Tereticornis leaves of essential oil. Ind. Crops Prod. 222, 119669. https://doi.org/10.1016/j.indcrop.2024.119669 (2024).
Petrovi´c, J. et al. Individual stereoisomers of verbenol and verbenone express bioactive features. J. Mol. Struct. 1251, 131999. https://doi.org/10.1016/j.molstruc.2021.131999 (2022).
Piao, J., Lim, S. S., Kim, H. H., Lee, S. Y. & Park, S. U. Analysis of volatile compounds from three species of Atractylodes by gas chromatography-mass spectrometry. J. Aridland Agric. 7, 68–75. https://doi.org/10.25081/jaa.2021.v7.7019 (2021).
Baharum, N. S., Bunawan, H., Ghani, A., Ma’aruf, Mustapha, W. A. W. & Noor, M. N. Analysis of the chemical composition of the essential oil of Polygonum minus huds. Using two-dimensional gas chromatography-time-of-flight mass spectrometry (GC-TOF MS). Molecules 15, 7006–7015. https://doi.org/10.3390/molecules15107006 (2010).
Kang, W. Y., Ji, Z. Q. & Wang, J. M. Composition of the essential oil of Adiantum flabellulatum. Chem. Nat. Compd. 45, 575–577. https://doi.org/10.1007/s10600-009-9371-5 (2009).
Dessy, V. J., Sivakumar, S. R., George, M. & Francis, S. GC–MS analysis of bioactive compounds present in different extracts of rhizome of Curcuma aeruginosa Roxb. J. Drug Deliv Ther. 9 (2-s), 13–19. https://doi.org/10.22270/jddt.v9i2-s.2589 (2019).
Hieu, T. T. et al. Chemical composition of the volatile oil from the leaves of Kaempferia champasakensis picheans. J. Essent. Oil Bear. Plants. 26 (1), 108–114. https://doi.org/10.1080/0972060X.2022.2161325 (2023). Koonterm. (Zingiberaceae.
Zhang, Y. al. Widely Targeted Volatilomics and Metabolomics Analysis Reveal the Metabolic Composition and Diversity of Zingiberaceae Plants. Metabolites 13, 700. https://doi.org/10.3390/metabo13060700 (2023).
Yu, C. W. et al. H.-C. Essential oil Alloaromadendrene from mixed-type Cinnamomum osmophloeum leaves prolongs the lifespan in Caenorhabditis elegans. J. Agric. Food Chem. 62 (26), 6159–6165. https://doi.org/10.1021/jf500417y (2014).
Moreira, C. I., Lago, G. H. J., Young, M. C. M. & Roque, F. N. Antifungal aromadendrane sesquiterpenoids from the leaves of Xylopia Brasiliensis. J. Braz Chem. Soc. 14, 828–831. https://doi.org/10.1590/S0103-50532003000500020 (2003).
Bukvicki, R. D. Assessment of the chemical composition and in vitro antimicrobial potential of extracts of the liverwort Scapania aspera. Nat. Prod. Commun. 8, 1313–1316 (2013).
De tommasi, N., Pizza, C. C., Orsi, N. & Stein, M. L. Structure and in vitro antiviral activity of sesquiterpene glycosides from Calendula arvensis. J. Nat. Prod. 53, 830–835. https://doi.org10.1021/np50070a009 (1990).
Masser, A. et al. Defensive role of tropical tree resins: antitermitic sesquiterpenes from Southeast Asian Dipterocarpaceae. J. Chem. Ecol. 16, 3333–3352 (1990).
Phongmaykin, J., Kumamoto, T., Ishikawa, T., Suttisri, R. & Saifah, E. A new sesquiterpene and other terpenoid constituents of Chisocheton penduliflorus. Arch. Pharm. Res. 31, 21–27. https://doi.org10.1007/s12272-008-1115-8 (2008).
Mustafa, K. H. et al. Phytochemical profile and antifungal activity of essential oils obtained from different Mentha longifolia L. accessions growing wild in Iran and Iraq. BMC Plant. Biol. 24, 461. https://doi.org/10.1186/s12870-024-05135-z (2024).
Sirilertpanich, P. Metabolomics study on the main volatile components of Thai colored rice cultivars from different agricultural locations. Food Chem. 434, 137424. https://doi.org/10.1016/j.foodchem.2023.137424 (2024).
Andriyas, T. et al. Integrating Spatial mapping and metabolomics: A novel platform for bioactive compound discovery and saline land reclamation. Comput. Struct. Biotechnol. J. 27, 1741–1753. https://doi.org/10.1016/j.csbj.2025.04.035 (2025).
Dechbumroong, P., Aumnouypol, S., Denduangboripant, J. & Sukrong, S. DNA barcoding of Aristolochia plants and development of species-specific multiplex PCR to aid HPTLC in ascertainment of Aristolochia herbal materials. PLoS ONE. 13 (8), e0202625. https://doi.org/10.1371/journal.pone.0202625 (2018).
Pichetkun, V., Gaewtongliam, S., Wiwatcharakornkul, W. & Sukrong, S. Combining DNA and HPTLC profiles to differentiate a pain relief herb, Mallotus repandus, from plants sharing the same common name, Kho-Khlan. PLoS ONE. 17 (6), e0268680. https://doi.org/10.1371/journal.pone.0268680 (2022).
Viraporn, V. et al. Correlation of Camptothecin-producing ability and phylogenetic relationship in the genus Ophiorrhiza. Planta Med. 77, 759–764. https://doi.org/10.1055/s-0030-1250568 (2011).
Nopporncharoenkul, N. et al. Cytotaxonomy of Kaempferia subg. Protanthium (Zingiberaceae) supports a new limestone species endemic to Thailand. Willdenowia 54 (2), 121–149. https://doi.org/10.3372/wi.54.54201 (2024).
Saensouk, P., Saensouk, S. & Boonma, T. Two new species of Kaempferia subgenus Kaempferia (Zingiberaceae: Zingibereae) from Thailand. Biodiversitas 23 (8), 4343–4354. https://doi.org/10.13057/biodiv/d230860 (2022).
Levin, R. A. et al. Family-level relationships of Onagraceae based on Chloroplast rbcL and ndhF data. Am. J. Bot. 90 (1), 107–115. https://doi.org/10.3732/ajb.90.1.107 (2003).
Ohi-Toma, T. et al. Molecular phylogeny of Aristolochia sensu Lato (Aristolochiaeae) based on sequences of rbcL, matK, and phyA genes, with special reference to differentiation of chromosome numbers. Syst. Bot. 31 (3), 481–492. https://doi.org/10.1043/05-38.1 (2006).
Sang, T., Crawford, D., Stuessy, T. & Chloroplast, D. N. A. phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am. J. Bot. 84 (8), 1120 (1997).
Tu, X. Effects of four drying methods on Amomum villosum lour. ‘Guiyan1’ volatile organic compounds analyzed via headspace solid phase Microextraction and gas chromatography-mass spectrometry coupled with OPLS-DA. RSC Adv. 12, 26485–26496. https://doi.org/10.1039/d2ra04592c (2022).
Liu, Q. Essential oil composition of Curcuma species and drugs from Asia analyzed by headspace solid-phase Microextraction coupled with gas chromatography-mass spectrometry. J. Nat. Med. 77, 152–172. https://doi.org/10.1007/s11418-022-01658-7 (2023).
Pang, Z. et al. MetaboAnalyst 6.0: towards a unified platform for metabolomics data processing, analysis and interpretation. Nucleic Acids Res. 52, W398–406. https://doi.org/10.1093/nar/gkae253 (2024).