Harvey, C. & Aultman-Hall, L. Measuring urban streetscapes for livability: a review of approaches. Prof. Geogr. 68, 149–158 (2016).

Article 

Google Scholar
 

Ma, X. et al. Measuring human perceptions of streetscapes to better inform urban renewal: a perspective of scene semantic parsing. Cities 110, 103086 (2021).

Article 

Google Scholar
 

Koo, B. W., Hwang, U. & Guhathakurta, S. Streetscapes as part of servicescapes: can walkable streetscapes make local businesses more attractive?. Comput. Environ. Urban Syst. 106, 102030 (2023).

Article 

Google Scholar
 

Anand, S. & Pujara, T. Towards anxiety alleviating streetscape design: a comprehensive literature review. Cities Health 8, 1134–1152 (2024).

Article 

Google Scholar
 

Latkin, C. A. & Curry, A. D. Stressful neighborhoods and depression: a prospective study of the impact of neighborhood disorder. J. Health Soc. Behav. 44, 34–44 (2003).

Article 

Google Scholar
 

Jiang, Y., Christopher Zegras, P. & Mehndiratta, S. Walk the line: station context, corridor type and bus rapid transit walk access in Jinan, China. J. Transp. Geogr. 20, 1–14 (2012).

Article 

Google Scholar
 

Rossetti, T., Lobel, H., Rocco, V. & Hurtubia, R. Explaining subjective perceptions of public spaces as a function of the built environment: a massive data approach. Landsc. Urban Plan. 181, 169–178 (2019).

Article 

Google Scholar
 

Dharmasthala, S., Sun, Q. & Langenheim, N. Are high distributed streetscapes also located in the high social interaction streets? A Space syntax approach on street liveability assessment. In 2021 28th International Conference on Geoinformatics 1–7, https://doi.org/10.1109/IEEECONF54055.2021.9687512 (2021).

Inoue, T., Manabe, R., Murayama, A. & Koizumi, H. The effect of culture-specific differences in urban streetscapes on the inference accuracy of deep learning models. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. X-4-W3-2022, 73–80 (2022).


Google Scholar
 

Qiu, W. et al. Subjective and objective measures of streetscape perceptions: Relationships with property value in Shanghai. Cities 132, 104037 (2023).

Article 

Google Scholar
 

Ogawa, Y., Oki, T., Zhao, C., Sekimoto, Y. & Shimizu, C. Evaluating the subjective perceptions of streetscapes using street-view images. Landsc. Urban Plan. 247, 105073 (2024).

Article 

Google Scholar
 

Lee, S. & Cho, N. Nonlinear and interaction effects of multi-dimensional street-level built environment features on urban vitality in Seoul. Cities 165, 106145 (2025).

Article 

Google Scholar
 

Said, S. & Samadi, Z. The evolution of historic streetscape in adapting modern demand in achieving the quality of life. Proc. Soc. Behav. Sci. 234, 488–497 (2016).

Article 

Google Scholar
 

Wey, W. M. & Wei, W. L. Urban street environment design for quality of urban life. Soc. Indic. Res. 126, 161–186 (2016).

Article 

Google Scholar
 

Sharifi, A. Resilient urban forms: a review of literature on streets and street networks. Build. Environ. 147, 171–187 (2019).

Article 

Google Scholar
 

Chen, Z. & Huang, B. Achieving urban vibrancy through effective city planning: a spatial and temporal perspective. Cities 152, 105230 (2024).

Article 

Google Scholar
 

Yang, L., Ao, Y., Ke, J., Lu, Y. & Liang, Y. To walk or not to walk? Examining non-linear effects of streetscape greenery on walking propensity of older adults. J. Transp. Geogr. 94, 103099 (2021).

Article 

Google Scholar
 

Devlin, A. S. Environmental Psychology and Human Well-Being (Academic Press, 2018).

Rapoport, A. The Meaning of the Built Environment: A Nonverbal Communication Approach (University of Arizona Press, 1990).

Hawley, A. H. Human Ecology: A Theory of Community Structure (The Ronald Press Company, 1950).

Zacharias, J. Pedestrian behavior pedestrian behavior and perception in urban walking environments. J. Plan. Lit. 16, 3–18 (2001).

Article 

Google Scholar
 

Kim, S. Are small cities disappearing? The policy responses to urban shrinkage oriented toward young people in Uiseong-gun, South Korea. Cities 155, 105450 (2024).

Article 

Google Scholar
 

He, X., Gao, W., Guan, D. & Zhou, L. Impacts of urban shrinkage on the built environment and its environmental sustainability: an analytical review. Environ. Res. Lett. 18, 103004 (2023).

Article 

Google Scholar
 

Lima, M. F. & Eischeid, M. R. Shrinking cities: rethinking landscape in depopulating urban contexts. Landsc. Res. 42, 691–698 (2017).

Article 

Google Scholar
 

Haase, A., Rink, D., Grossmann, K., Bernt, M. & Mykhnenko, V. Conceptualizing Urban Shrinkage. Environ. Plan. Econ. Space 46, 1519–1534 (2014).

Article 

Google Scholar
 

Sarif, N. & Roy, A. K. Measuring urban shrinkage in India using night-light data from DMSP-OLS and VIIRS-NPP satellite sensors. Cities 152, 105176 (2024).

Article 

Google Scholar
 

Li, Z. & Long, Y. Analysis of the Variation in Quality of Street Space in Shrinking Cities Based on Dynamic Street View Picture Recognition: A Case Study of Qiqihar. In Shrinking Cities in China: The Other Facet of Urbanization (eds. Long, Y. & Gao, S.) 141–155 (Springer, 2019). https://doi.org/10.1007/978-981-13-2646-2_8.

Barreira, A. P., Nunes, L. C., Guimarães, M. H. & Panagopoulos, T. Satisfied but thinking about leaving: the reasons behind residential satisfaction and residential attractiveness in shrinking Portuguese cities. Int. J. Urban Sci. 23, 67–87 (2019).

Article 

Google Scholar
 

Khavarian-Garmsir, A. R. A systematic review of shrinking cities literature: lessons from the past and directions for the future. Int. Plan. Stud. 28, 219–238 (2023).

Article 

Google Scholar
 

Istrate, A.-L., Bosák, V., Nováček, A. & Slach, O. How attractive for walking are the main streets of a shrinking city?. Sustainability 12, 6060 (2020).

Article 

Google Scholar
 

Boarnet, M. G., Forsyth, A., Day, K. & Oakes, J. M. The street level built environment and physical activity and walking: results of a predictive validity study for the Irvine Minnesota Inventory. Environ. Behav. 43, 735–775 (2011).

Article 

Google Scholar
 

Park, K., Ewing, R., Sabouri, S. & Larsen, J. Street life and the built environment in an auto-oriented US region. Cities 88, 243–251 (2019).

Article 

Google Scholar
 

Jiang, Y., Han, Y., Liu, M. & Ye, Y. Street vitality and built environment features: a data-informed approach from fourteen Chinese cities. Sustain. Cities Soc. 79, 103724 (2022).

Article 

Google Scholar
 

Lee, S., Lee, S. & Putri, D. W. Multifaceted associations between built environments and POI visit patterns by trip purposes. Cities 161, 105903 (2025).

Article 

Google Scholar
 

Chen, L., Lu, Y., Ye, Y., Xiao, Y. & Yang, L. Examining the association between the built environment and pedestrian volume using street view images. Cities 127, 103734 (2022).

Article 

Google Scholar
 

Vallebueno, A. & Lee, Y. S. Measuring urban quality and change through the detection of physical attributes of decay. Sci. Rep. 13, 17316 (2023).

Article 
CAS 

Google Scholar
 

Xu, Y., Tong, H., Liu, J., Su, Y. & Li, M. An assessment of the urban streetscape using multiscale data and semantic segmentation in Jinan Old City, China. Buildings 14, 2687 (2024).

Article 

Google Scholar
 

Cetintahra, G. E. & Cubukcu, E. The influence of environmental aesthetics on economic value of housing: an empirical research on virtual environments. J. Hous. Built Environ. 30, 331–340 (2015).

Article 

Google Scholar
 

Sheets, V. L. & Manzer, C. D. Affect, cognition, and urban vegetation: some effects of adding trees along city streets. Environ. Behav. 23, 285–304 (1991).

Article 

Google Scholar
 

Foster, S., Hooper, P., Knuiman, M., Bull, F. & Giles-Corti, B. Are liveable neighbourhoods safer neighbourhoods? Testing the rhetoric on new urbanism and safety from crime in Perth, Western Australia. Soc. Sci. Med. 164, 150–157 (2016).

Article 

Google Scholar
 

Mertens, L. et al. Which environmental factors most strongly influence a street’s appeal for bicycle transport among adults? A conjoint study using manipulated photographs. Int. J. Health Geogr. 15, 31 (2016).

Article 

Google Scholar
 

Ki, D. & Lee, S. Analyzing the effects of Green View Index of neighborhood streets on walking time using Google Street View and deep learning. Landsc. Urban Plan. 205, 103920 (2021).

Article 

Google Scholar
 

Ding, C., Jason Cao, X. & Næss, P. Applying gradient boosting decision trees to examine non-linear effects of the built environment on driving distance in Oslo. Transp. Res. Part Policy Pract. 110, 107–117 (2018).

Article 

Google Scholar
 

Gao, K., Yang, Y., Gil, J. & Qu, X. Data-driven interpretation on interactive and nonlinear effects of the correlated built environment on shared mobility. J. Transp. Geogr. 110, 103604 (2023).

Article 

Google Scholar
 

Lee, S. Relationships between transportation expenditures and built environment in the United States: insights from interpretable machine-learning approach. J. Plan. Educ. Res. https://doi.org/10.1177/0739456X241268464 (2024).

Article 

Google Scholar
 

Lee, S., Ki, D., Hipp, J. R. & Kim, J. H. Analysing non-linearities and threshold effects between street-level built environments and local crime patterns: an interpretable machine learning approach. Urban Stud. https://doi.org/10.1177/00420980241270948 (2024).

Article 

Google Scholar
 

Jin, K., Guo, W. & Yang, T. Urban street quality measurement in central city by combining street view images and deep learning. In 2023 5th International Academic Exchange Conference on Science and Technology Innovation (IAECST) 592–601. https://doi.org/10.1109/IAECST60924.2023.10502610 (2023).

Liang, X., Chang, J. H., Gao, S., Zhao, T. & Biljecki, F. Evaluating human perception of building exteriors using street view imagery. Build. Environ. 263, 111875 (2024).

Article 

Google Scholar
 

Jacobs, J. The Death and Life of Great American Cities (Random House, 1961).

Woo, A., Han, J., Shin, H. & Lee, S. Economic benefits of urban streetscapes: analyzing the interrelationships between visual street environments and single-family property values in Seoul, Korea. Appl. Geogr. 163, 103182 (2024).

Article 

Google Scholar
 

Bibri, S. E., Krogstie, J. & Kärrholm, M. Compact city planning and development: emerging practices and strategies for achieving the goals of sustainability. Dev. Built Environ. 4, 100021 (2020).

Article 

Google Scholar
 

Hu, Y., Liu, Y., Chen, P. & Zhang, M. The impact of residents’ perceptions of urban shrinkage on overall life satisfaction – The case of Yichun, China. Cities 141, 104445 (2023).

Article 

Google Scholar
 

Rupprecht, C. D. D. Informal urban green space: residents’ perception, use, and management preferences across four major Japanese shrinking cities. Land 6, 59 (2017).

Article 

Google Scholar
 

Xu, J. et al. Understanding the nonlinear effects of the street canyon characteristics on human perceptions with street view images. Ecol. Indic. 154, 110756 (2023).

Article 

Google Scholar
 

Koo, B. W., Guhathakurta, S. & Botchwey, N. How are neighborhood and street-level walkability factors associated with walking behaviors? A big data approach using street view images. Environ. Behav. 54, 211–241 (2022).

Article 

Google Scholar
 

Zhou, H. et al. A multiscale assessment of the impact of perceived safety from street view imagery on street crime. Ann. Am. Assoc. Geogr. 114, 69–90 (2024).


Google Scholar
 

Biljecki, F. & Ito, K. Street view imagery in urban analytics and GIS: a review. Landsc. Urban Plan. 215, 104217 (2021).

Article 

Google Scholar
 

He, J., Zhang, J., Yao, Y. & Li, X. Extracting human perceptions from street view images for better assessing urban renewal potential. Cities 134, 104189 (2023).

Article 

Google Scholar
 

Sun, H. et al. A spatial analysis of urban streets under deep learning based on street view imagery: quantifying perceptual and elemental perceptual relationships. Sustainability 15, 14798 (2023).

Article 

Google Scholar
 

Yuan, Y., Wang, R., Niu, T. & Liu, Y. Using street view images and a geographical detector to understand how street-level built environment is associated with urban poverty: a case study in Guangzhou. Appl. Geogr. 156, 102980 (2023).

Article 

Google Scholar
 

Lu, Y., Ferranti, E. J. S., Chapman, L. & Pfrang, C. Assessing urban greenery by harvesting street view data: a review. Urban. Urban Green. 83, 127917 (2023).

Article 

Google Scholar
 

Li, Y., Miller, H. J., Root, E. D., Hyder, A. & Liu, D. Understanding the role of urban social and physical environment in opioid overdose events using found geospatial data. Health Place 75, 102792 (2022).

Article 

Google Scholar
 

Quercia, D., O’Hare, N. K. & Cramer, H. Aesthetic capital: what makes london look beautiful, quiet, and happy? In Proceedings of the 17th ACM conference on Computer supported cooperative work & social computing 945–955 (Association for Computing Machinery, 2014). https://doi.org/10.1145/2531602.2531613.

Dubey, A., Naik, N., Parikh, D., Raskar, R. & Hidalgo, C. A. Deep learning the city: quantifying urban perception at a global scale. In Computer Vision – ECCV 2016 (eds. Leibe, B., Matas, J., Sebe, N. & Welling, M.) 196–212 (Springer International Publishing, Cham, 2016). https://doi.org/10.1007/978-3-319-46448-0_12.

Kushlev, K., Drummond, D. M. & Diener, E. Subjective well-being and health behaviors in 2.5 million Americans. Appl. Psychol. Health Well Being 12, 166–187 (2020).

Article 

Google Scholar
 

Li, X., Zhang, C. & Li, W. Does the visibility of greenery increase perceived safety in urban areas? Evidence from the place pulse 1.0 dataset. ISPRS Int. J. Geo Inf. 4, 1166–1183 (2015).

Article 

Google Scholar
 

Freitas, F., Berreth, T., Chen, Y.-C. & Jhala, A. Characterizing the perception of urban spaces from visual analytics of street-level imagery. AI Soc. 38, 1361–1371 (2023).

Article 

Google Scholar
 

Huang, X. et al. Comprehensive walkability assessment of urban pedestrian environments using big data and deep learning techniques. Sci. Rep. 14, 26993 (2024).

Article 
CAS 

Google Scholar
 

Shi, H., Yu, L., Xu, Y., Liu, Y. & Zhao, M. The impact of the streetscape built environment on recreation satisfaction: a case study of Guangzhou. J. Transp. Geogr. 112, 103702 (2023).

Article 

Google Scholar
 

Rita, L., Peliteiro, M., Bostan, T.-C., Tamagusko, T. & Ferreira, A. Using deep learning and google street view imagery to assess and improve cyclist safety in London. Sustainability 15, 10270 (2023).

Article 

Google Scholar
 

Kim, G.-E. & Lee, J.-R. The impact of historic building preservation in urban economics: focusing on accommodation prices in Jeonju Hanok Village, South Korea. Sustainability 12, 5005 (2020).

Article 

Google Scholar
 

Lee, J.-S. Measuring the benefits of the intangible cultural heritage hall in Jeonju Korea: results of a contingent valuation survey. J. Cult. Herit. 16, 236–238 (2015).

Article 

Google Scholar
 

Lee, S., Ock, Y., Kim, M. & Schrock, G. The regional uneven development and the state intervention to reshape the spatial hierarchy. Int. J. Reg. Dev. 8, 1 (2021).

CAS 

Google Scholar
 

Lee, J., Kim, D. & Park, J. A machine learning and computer vision study of the environmental characteristics of streetscapes that affect pedestrian satisfaction. Sustainability 14, 5730 (2022).

Article 

Google Scholar
 

Lavieri, P. S. & Bhat, C. R. Investigating objective and subjective factors influencing the adoption, frequency, and characteristics of ride-hailing trips. Transp. Res. Part C. Emerg. Technol. 105, 100–125 (2019).

Article 

Google Scholar
 

Kang, Y., Kim, J., Park, J. & Lee, J. Assessment of perceived and physical walkability using street view images and deep learning technology. ISPRS Int. J. Geo-Inf. 12, 186 (2023).

Article 

Google Scholar
 

Zhang, J. & Hu, A. Analyzing green view index and green view index best path using Google street view and deep learning. J. Comput. Des. Eng. 9, 2010–2023 (2022).


Google Scholar
 

Aikoh, T., Homma, R. & Abe, Y. Comparing conventional manual measurement of the green view index with modern automatic methods using google street view and semantic segmentation. Urban. Urban Green. 80, 127845 (2023).

Article 

Google Scholar
 

Shin, H.-C. et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35, 1285–1298 (2016).

Article 

Google Scholar
 

Gupta, J., Pathak, S. & Kumar, G. Deep learning (CNN) and transfer learning: a review. J. Phys. Conf. Ser. 2273, 012029 (2022).

Article 

Google Scholar
 

Lee, J. S., Won, S. & Kim, S. Describing changes in the built environment of shrinking cities: case study of Incheon, South Korea. J. Urban Plan. Dev. 142, 05015010 (2016).

Article 

Google Scholar
 

Hollander, J., Johnson, M., Drew, R. B. & Tu, J. Changing urban form in a shrinking city. Environ. Plan. B 46, 963–991 (2019).


Google Scholar
 

Yin, C., Cao, J. & Sun, B. Examining non-linear associations between population density and waist-hip ratio: an application of gradient boosting decision trees. Cities 107, 102899 (2020).

Article 

Google Scholar
 

Yang, L., Liang, Y., Zhu, Q. & Chu, X. Machine learning for inference: using gradient boosting decision tree to assess non-linear effects of bus rapid transit on house prices. Ann. GIS 27, 273–284 (2021).

Article 

Google Scholar
 

Liu, J., Wang, B. & Xiao, L. Non-linear associations between built environment and active travel for working and shopping: an extreme gradient boosting approach. J. Transp. Geogr. 92, 103034 (2021).

Article 

Google Scholar
 

Lee, S. Transportation Mode Choice Behavior in the Era of Autonomous Vehicles: The Application of Discrete Choice Modeling and Machine Learning (Portland State University, 2022).

Wu, J. & Kulcsár, B. A modular, adaptive, and autonomous transit system (MAATS): A in-motion transfer strategy and performance evaluation in urban grid transit networks. Transp. Res. Part Policy Pract. 151, 81–98 (2021). Selpi & Qu, X.

Article 

Google Scholar
 

Shams, M. Y. et al. Water quality prediction using machine learning models based on grid search method. Multimed. Tools Appl. 83, 35307–35334 (2024).

Article 

Google Scholar
 

Refaeilzadeh, P., Tang, L. & Liu, H. Cross-validation. In Encyclopedia of Database Systems (eds. Liu, L. & Özsu, M. T.) 1–7 (Springer, 2016). https://doi.org/10.1007/978-1-4899-7993-3_565-2.

Malakouti, S. M., Menhaj, M. B. & Suratgar, A. A. The usage of 10-fold cross-validation and grid search to enhance ML methods performance in solar farm power generation prediction. Clean. Eng. Technol. 15, 100664 (2023).

Article 

Google Scholar
 

Huang, N., Lu, G. & Xu, D. A permutation importance-based feature selection method for short-term electricity load forecasting using random forest. Energies 9, 767 (2016).

Article 

Google Scholar
 

Mi, X., Zou, B., Zou, F. & Hu, J. Permutation-based identification of important biomarkers for complex diseases via machine learning models. Nat. Commun. 12, 3008 (2021).

Article 

Google Scholar
 

Zhao, X. et al. Factors affecting traffic risks on bridge sections of freeways based on partial dependence plots. Phys. Stat. Mech. Appl. 598, 127343 (2022).

Article 

Google Scholar
 

Shi, H., Yang, N., Yang, X. & Tang, H. Clarifying relationship between PM2.5 concentrations and spatiotemporal predictors using multi-way partial dependence plots. Remote Sens. 15, 358 (2023).

Article 

Google Scholar
 

Inglis, A., Parnell, A. & Hurley, C. B. Visualizing variable importance and variable interaction effects in machine learning models. J. Comput. Graph. Stat. 31, 766–778 (2022).

Article 

Google Scholar
 

Ullah, I., Liu, K., Yamamoto, T., Zahid, M. & Jamal, A. Modeling of machine learning with SHAP approach for electric vehicle charging station choice behavior prediction. Travel Behav. Soc. 31, 78–92 (2023).

Article 

Google Scholar