Nixon, C. et al. Titan’s cold case files – outstanding questions after Cassini-Huygens. Planet. Space Sci. 155, 50–72 (2018).

Article 
ADS 

Google Scholar
 

Iess, L. et al. The tides of Titan. Science 337, 457–459 (2012).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Durante, D., Hemingway, D., Racioppa, P., Iess, L. & Stevenson, D. Titan’s gravity field and interior structure after Cassini. Icarus 326, 123–132 (2019).

Article 
ADS 

Google Scholar
 

Downey, B. G. & Nimmo, F. Titan’s spin state as a constraint on tidal dissipation. Sci. Adv. 11, eadl4741 (2025).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Tobie, G., Mocquet, A. & Sotin, C. Tidal dissipation within large icy satellites: applications to Europa and Titan. Icarus 177, 534–549 (2005).

Article 
ADS 

Google Scholar
 

Kalousová, K. & Sotin, C. Dynamics of Titan’s high-pressure ice layer. Earth Planet. Sci. Lett. 545, 116416 (2020).

Article 

Google Scholar
 

Iess, L. et al. Gravity field, shape, and moment of inertia of Titan. Science 327, 1367–1369 (2010).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Castillo-Rogez, J. C. & Lunine, J. I. Evolution of Titan’s rocky core constrained by Cassini observations. Geophys. Res. Lett. 37, L20205 (2010).

Article 
ADS 

Google Scholar
 

Néri, A., Guyot, F., Reynard, B. & Sotin, C. A carbonaceous chondrite and cometary origin for icy moons of Jupiter and Saturn. Earth Planet. Sci. Lett. 530, 115920 (2020).

Article 

Google Scholar
 

Rappaport, N. J. et al. Can Cassini detect a subsurface ocean in Titan from gravity measurements? Icarus 194, 711–720 (2008).

Article 
ADS 

Google Scholar
 

Segatz, M., Spohn, T., Ross, M. & Schubert, G. Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io. Icarus 75, 187–206 (1988).

Article 
ADS 

Google Scholar
 

Sohl, F., Hussmann, H., Schwentker, B., Spohn, T. & Lorenz, R. D. Interior structure models and tidal Love numbers of Titan. J. Geophys. Res. Planets 108, 5130 (2003).

Article 
ADS 

Google Scholar
 

Mitri, G. et al. Shape, topography, gravity anomalies and tidal deformation of Titan. Icarus 236, 169–177 (2014).

Article 
ADS 

Google Scholar
 

Baland, R.-M., Tobie, G., Lefèvre, A. & Van Hoolst, T. Titan’s internal structure inferred from its gravity field, shape, and rotation state. Icarus 237, 29–41 (2014).

Article 
ADS 

Google Scholar
 

Idini, B. & Nimmo, F. Resonant stratification in Titan’s global ocean. Planet. Sci. J. 5, 15 (2024).

Article 

Google Scholar
 

Goossens, S., van Noort, B., Mate, A., Mazarico, E. & van der Wal, W. A low-density ocean inside Titan inferred from Cassini data. Nat. Astron. 8, 846–855 (2024).

Article 
ADS 

Google Scholar
 

Stiles, B. W. et al. Determining Titan’s spin state from Cassini RADAR Images. Astron. J. 135, 1669–1680 (2008).

Article 
ADS 

Google Scholar
 

Baland, R.-M., Van Hoolst, T., Yseboodt, M. & Karatekin, O. Titan’s obliquity as evidence of a subsurface ocean? Astron. Astrophys. 530, A141 (2011).

Article 

Google Scholar
 

Bills, B. G. & Nimmo, F. Rotational dynamics and internal structure of Titan. Icarus 214, 351–355 (2011).

Article 
ADS 

Google Scholar
 

Baland, R.-M., Yseboodt, M. & Van Hoolst, T. The obliquity of Enceladus. Icarus 268, 12–31 (2016).

Article 
ADS 

Google Scholar
 

Béghin, C. et al. Analytic theory of Titan’s Schumann resonance: constraints on ionospheric conductivity and buried water ocean. Icarus 218, 1028–1042 (2012).

Article 
ADS 

Google Scholar
 

Lorenz, R. D. & Le Gall, A. Schumann resonance on Titan: a critical re-assessment. Icarus 351, 113942 (2020).

Article 

Google Scholar
 

Le Maistre, S. et al. Spin state and deep interior structure of Mars from InSight radio tracking. Nature 619, 733–737 (2023).

Article 
ADS 
PubMed 

Google Scholar
 

Buccino, D., Border, J. S., Folkner, W. M., Kahan, D. & Le Maistre, S. Low-SNR Doppler data processing for the InSight radio science experiment. Remote Sens. 14, 1924 (2022).

Article 
ADS 

Google Scholar
 

Ray, R. D., Eanes, R. J. & Lemoine, F. G. Constraints on energy dissipation in the Earth’s body tide from satellite tracking and altimetry. Geophys. J. Int. 144, 471–480 (2001).

Article 
ADS 

Google Scholar
 

Bagheri, A., Khan, A., Al-Attar, D., Crawford, O. & Giardini, D. Tidal response of Mars constrained from laboratory-based viscoelastic dissipation models and geophysical data. J. Geophys. Res. Planets 124, 2703–2727 (2019).

Article 
ADS 

Google Scholar
 

Petricca, F. et al. Partial differentiation of Europa and implications for the origin of materials in the Jupiter system. Nat. Astron. 9, 501–511 (2025).

Article 
ADS 

Google Scholar
 

Petricca, F. et al. Exploring the tidal responses of ocean worlds with PyALMA. Icarus 417, 116120 (2024).

Article 

Google Scholar
 

Yao, C., Deschamps, F., Lowman, J. P., Sanchez-Valle, C. & Tackley, P. J. Stagnant lid convection in bottom-heated thin 3-D spherical shells: influence of curvature and implications for dwarf planets and icy moons. J. Geophys. Res. Planets 119, 1895–1913 (2014).

Article 
ADS 

Google Scholar
 

Castillo-Rogez, J. C., Efroimsky, M. & Lainey, V. The tidal history of Iapetus: spin dynamics in the light of a refined dissipation model. J. Geophys. Res. Planets 116, E09008 (2011).

Article 
ADS 

Google Scholar
 

Hilairet, N. et al. High-pressure creep of serpentine, interseismic deformation, and initiation of subduction. Science 318, 1910–1913 (2007).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Poirier, J. P., Sotin, C. & Peyronneau, J. Viscosity of high-pressure ice VI and evolution and dynamics of Ganymede. Nature 292, 225–227 (1981).

Article 
ADS 
CAS 

Google Scholar
 

Durham, W. B., Stern, L. A. & Kirby, S. H. Rheology of water ices V and VI. J. Geophys. Res. Solid Earth 101, 2989–3001 (1996).

Article 
CAS 

Google Scholar
 

Zarriz, A., Journaux, B. & Powell-Palm, M. J. On the equilibrium limit of liquid stability in pressurized aqueous systems. Nat. Commun. 15, 10666 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lunine, J. I. & Stevenson, D. J. Clathrate and ammonia hydrates at high pressure: application to the origin of methane on Titan. Icarus 70, 61–77 (1987).

Article 
ADS 
CAS 

Google Scholar
 

Tobie, G., Lunine, J. & Sotin, C. Episodic outgassing as the origin of atmospheric methane on Titan. Nature 440, 61–64 (2006).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Lainey, V. et al. Resonance locking in giant planets indicated by the rapid orbital expansion of Titan. Nat. Astron. 4, 1053–1058 (2020).

Article 
ADS 

Google Scholar
 

Wisdom, J. et al. Loss of a satellite could explain Saturn’s obliquity and young rings. Science 377, 1285–1289 (2022).

Article 
ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Asphaug, E. & Reufer, A. Late origin of the Saturn system. Icarus 223, 544–565 (2013).

Article 
ADS 

Google Scholar
 

Journaux, B. et al. Large ocean worlds with high-pressure ices. Space Sci. Rev. 216, 7 (2020).

Article 
ADS 

Google Scholar
 

Sotin, C., Kalousová, K. & Tobie, G. Titan’s interior structure and dynamics after the Cassini-Huygens mission. Annu. Rev. Earth Planet. Sci. 49, 579–607 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Hendrix, A. R. et al. The NASA Roadmap to Ocean Worlds. Astrobiology 19, 1–27 (2019).

Article 
ADS 
PubMed 

Google Scholar
 

Kalousová, K. et al. Evolution of impact melt pools on Titan. J. Geophys. Res. Planets 129, e2023JE008107 (2024).

Article 
ADS 

Google Scholar
 

Arrigo, K. R. Sea ice ecosystems. Annu. Rev. Mar. Sci. 6, 439–467 (2014).

Article 
ADS 

Google Scholar
 

Cappuccio, P. et al. Ganymede’s gravity, tides and rotational state from JUICE’s 3GM experiment simulation. Planet. Space Sci. 187, 104902 (2020).

Article 

Google Scholar
 

Kivelson, M., Khurana, K. & Volwerk, M. The permanent and inductive magnetic moments of Ganymede. Icarus 157, 507–522 (2002).

Article 
ADS 

Google Scholar
 

Showman, A. P., Stevenson, D. J. & Malhotra, R. Coupled orbital and thermal evolution of Ganymede. Icarus 129, 367–383 (1997).

Article 
ADS 

Google Scholar
 

Jia, X., Kivelson, M. G., Khurana, K. K. & Walker, R. J. Improved models of Ganymede’s permanent and induced magnetic fields based on Galileo and Juno data. J. Geophys. Res. Planets 130, e2024JE008309 (2025).

Article 
ADS 

Google Scholar
 

Sotin, C. et al. Oceanus: a New Frontiers orbiter to study Titan’s potential habitability. 19th EGU General Assembly (2017).

Evans, S. et al. MONTE: the next generation of mission design and navigation software. CEAS Space J. 10, 79–86 (2018).

Article 
ADS 

Google Scholar
 

Buccino, D. R., Kahan, D. S., Yang, O. & Oudrhiri, K. Extraction of Doppler observables from open-loop recordings for the Juno radio science investigation. In Proc. 2018 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM) (IEEE, 2018).

Jacobson, R. A. The orbits of the main Saturnian satellites, the Saturnian system gravity field, and the orientation of Saturn’s pole. Astron. J. 164, 199 (2022).

Article 
ADS 

Google Scholar
 

Justus, C., Duvall, A. & Johnson, D. Engineering-level model atmospheres for Titan and Neptune. In Proc. 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (American Institute of Aeronautics and Astronautics, 2003).

Lebonnois, S., Burgalat, J., Rannou, P. & Charnay, B. Titan global climate model: a new 3-dimensional version of the IPSL Titan GCM. Icarus 218, 707–722 (2012).

Article 
ADS 

Google Scholar
 

Petricca, F., Genova, A., Goossens, S., Iess, L. & Spada, G. Constraining the internal structures of Venus and Mars from the gravity response to atmospheric loading. Planet. Sci. J. 3, 164 (2022).

Article 

Google Scholar
 

Cascioli, G. et al. Constraining the Venus interior structure with future VERITAS measurements of the gravitational atmospheric loading. Planet. Sci. J. 4, 65 (2023).

Article 

Google Scholar
 

Journaux, B. et al. Holistic approach for studying planetary hydrospheres: Gibbs representation of ices thermodynamics, elasticity, and the water phase diagram to 2,300 MPa. J. Geophys. Res. Planets 125, e2019JE006176 (2020).

Article 
ADS 

Google Scholar
 

Vance, S., Bouffard, M., Choukroun, M. & Sotin, C. Ganymede’s internal structure including thermodynamics of magnesium sulfate oceans in contact with ice. Planet. Space Sci. 96, 62–70 (2014).

Article 
ADS 
CAS 

Google Scholar
 

Bollengier, O., Brown, J. M. & Shaw, G. H. Thermodynamics of pure liquid water: sound speed measurements to 700 MPa down to the freezing point, and an equation of state to 2300 MPa from 240 to 500 K. J. Chem. Phys. 151, 054501 (2019).

Article 
ADS 

Google Scholar
 

Bagheri, A. et al. The tidal–thermal evolution of the Pluto–Charon system. Icarus 376, 114871 (2022).

Article 

Google Scholar
 

Jackson, I. & Faul, U. H. Grainsize-sensitive viscoelastic relaxation in olivine: towards a robust laboratory-based model for seismological application. Phys. Earth Planet. Inter. 183, 151–163 (2010).

Article 
ADS 

Google Scholar
 

Bierson, C. J. The impact of rheology model choices on tidal heating studies. Icarus 414, 116026 (2024).

Article 

Google Scholar
 

Amorim, D. O. & Gudkova, T. Constraining Earth’s mantle rheology with Love and Shida numbers at the M2 tidal frequency. Phys. Earth Planet. Inter. 347, 107144 (2024).

Article 

Google Scholar
 

Petricca, F. et al. Characterization of icy moon hydrospheres through joint inversion of gravity and magnetic field measurements. Geophys. Res. Lett. 50, e2023GL104016 (2023).

Article 
ADS 

Google Scholar
 

Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306–312 (2013).

Article 
ADS 

Google Scholar
 

Cascioli, G., Mazarico, E., Dombard, A. J. & Nimmo, F. Leveraging the gravity field spectrum for icy satellite interior structure determination: the case of Europa with the Europa Clipper Mission. Planet. Sci. J. 5, 45 (2024).

Article 

Google Scholar
 

Lainey, V., Arlot, J.-E., Karatekin, O. & Van Hoolst, T. Strong tidal dissipation in Io and Jupiter from astrometric observations. Nature 459, 957–959 (2009).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Iess, L. et al. Measurement and implications of Saturn’s gravity field and ring mass. Science 364, eaat2965 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

McCarthy, C. & Cooper, R. F. Tidal dissipation in creeping ice and the thermal evolution of Europa. Earth Planet. Sci. Lett. 443, 185–194 (2016).

Article 
ADS 
CAS 

Google Scholar
 

Solomatov, V. S. Scaling of temperature- and stress-dependent viscosity convection. Phys. Fluids 7, 266–274 (1995).

Article 
ADS 
CAS 

Google Scholar
 

Lorenz, R. D. et al. Titan’s rotation reveals an internal ocean and changing zonal winds. Science 319, 1649–1651 (2008).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Meriggiola, R., Iess, L., Stiles, B., Lunine, J. & Mitri, G. The rotational dynamics of Titan from Cassini RADAR images. Icarus 275, 183–192 (2016).

Article 
ADS 

Google Scholar
 

Béghin, C. The atypical generation mechanism of Titan’s Schumann resonance. J. Geophys. Res. Planets 119, 520–531 (2014).

Article 
ADS 

Google Scholar
 

Colombo, G. Cassini’s Second and Third Laws. In: Measure of the Moon. Astrophysics and Space Science Library, Vol 8, 12–22 (Springer, 1967).

Yoder, C. The free librations of a dissipative Moon. Philos. Trans. R. Soc. Lond. A Math. Phys. Sci. 303, 327–338 (1981).

Article 
ADS 

Google Scholar
 

Williams, J. G., Boggs, D. H., Yoder, C. F., Ratcliff, J. T. & Dickey, J. O. Lunar rotational dissipation in solid body and molten core. J. Geophys. Res. Planets 106, 27933–27968 (2001).

Article 
ADS 

Google Scholar
 

Tokano, T. Tidal winds on Titan caused by Saturn. Icarus 158, 499–515 (2002).

Article 
ADS 

Google Scholar
 

Charnay, B., Tobie, G., Lebonnois, S. & Lorenz, R. D. Gravitational atmospheric tides as a probe of Titan’s interior: application to Dragonfly. Astron. Astrophys. 658, A108 (2022).

Article 
ADS 

Google Scholar
 

Kamata, S. et al. Tidal deformation of Ganymede: sensitivity of Love numbers on the interior structure. J. Geophys. Res. Planets 121, 1362–1375 (2016).

Article 
ADS 

Google Scholar
 

McKinnon, W. B. Convective instability in Europa’s floating ice shell. Geophys. Res. Lett. 26, 951–954 (1999).

Article 
ADS 

Google Scholar
 

Choukroun, M. & Grasset, O. Thermodynamic model for water and high-pressure ices up to 2.2 GPa and down to the metastable domain. J. Chem. Phys. 127, 124506 (2007).

Article 
ADS 
PubMed 

Google Scholar
 

Tobie, G., Choblet, G. & Sotin, C. Tidally heated convection: constraints on Europa’s ice shell thickness. J. Geophys. Res. Planets 108, 5124 (2003).

Article 
ADS 

Google Scholar
 

Ojakangas, G. W. & Stevenson, D. J. Thermal state of an ice shell on Europa. Icarus 81, 220–241 (1989).

Article 
ADS 
CAS 

Google Scholar
 

Renaud, J. P. & Henning, W. G. Increased tidal dissipation using advanced rheological models: implications for Io and tidally active exoplanets. Astrophys. J. 857, 98 (2018).

Article 
ADS 

Google Scholar
 

Bagheri, A. et al. Tidal insights into rocky and icy bodies: an introduction and overview. Adv. Geophys. 63, 231–320 (2022).

Article 
ADS 

Google Scholar
 

Peltier, W. R. The impulse response of a Maxwell Earth. Rev. Geophys. 12, 649–669 (1974).

Article 
ADS 

Google Scholar
 

Bills, B. G. Improved estimate of tidal dissipation within Mars from MOLA observations of the shadow of Phobos. J. Geophys. Res. Planets 110, E07004 (2005).

Article 
ADS 

Google Scholar
 

Gao, P. & Stevenson, D. J. Nonhydrostatic effects and the determination of icy satellites’ moment of inertia. Icarus 226, 1185–1191 (2013).

Article 
ADS 
CAS 

Google Scholar
 

Moore, W. B. & Schubert, G. The tidal response of Ganymede and Callisto with and without liquid water oceans. Icarus 166, 223–226 (2003).

Article 
ADS 

Google Scholar
 

Mazarico, E., Barker, M. K., Neumann, G. A., Zuber, M. T. & Smith, D. E. Detection of the lunar body tide by the Lunar Orbiter Laser Altimeter. Geophys. Res. Lett. 41, 2282–2288 (2014).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Xiao, H. et al. Mercury’s tidal Love number h2 from co-registration of MLA profiles. Geophys. Res. Lett. 52, e2024GL112266 (2025).

Article 
ADS 

Google Scholar
 

Durante, D. et al. Analysis of Cassini altimetric crossovers on Titan. Remote Sens. 16, 2209 (2024).

Article 
ADS 

Google Scholar
 

Steinbrügge, G. et al. Assessing the potential for measuring Europa’s tidal Love number h2 using radar sounder and topographic imager data. Earth Planet. Sci. Lett. 482, 334–341 (2018).

Article 
ADS 

Google Scholar
 

Steinbrügge, G., Stark, A., Hussmann, H., Sohl, F. & Oberst, J. Measuring tidal deformations by laser altimetry. A performance model for the Ganymede Laser Altimeter. Planet. Space Sci. 117, 184–191 (2015).

Article 
ADS 

Google Scholar
 

Van Hoolst, T., Baland, R.-M. & Trinh, A. On the librations and tides of large icy satellites. Icarus 226, 299–315 (2013).

Article 
ADS 

Google Scholar
 

Thomas, P. et al. Enceladus’s measured physical libration requires a global subsurface ocean. Icarus 264, 37–47 (2016).

Article 
ADS 

Google Scholar
 

Hemingway, D. J. & Nimmo, F. Looking for subsurface oceans within the moons of Uranus using librations and gravity. Geophys. Res. Lett. 51, e2024GL110409 (2024).

Article 
ADS 

Google Scholar
 

Petricca, F., Landau, D., Melwani Daswani, M. & Castillo-Rogez, J. Gravity and radio science investigation at the moons of Uranus to reveal subsurface oceans and characterize interior structures. J. Geophys. Res. Planets 130, e2024JE008715 (2025).

Article 
ADS 

Google Scholar
 

Van Hoolst, T., Rambaux, N., Karatekin, O., Dehant, V. & Rivoldini, A. The librations, shape, and icy shell of Europa. Icarus 195, 386–399 (2008).

Article 
ADS 

Google Scholar
 

Styczinski, M., Melini, D. & Tharimena, S. drsaikirant88/PyALMA3: author list correction. Zenodo https://doi.org/10.5281/zenodo.10476128 (2024).