Mahmudi, H. et al. Tumor microenvironment penetrating chitosan nanoparticles for elimination of cancer relapse and minimal residual disease. Front. Oncol. 12, 1054029 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Nejati-Koshki, K. et al. Inhibition of leptin gene expression and secretion by silibinin: Possible role of estrogen receptors. Cytotechnology 64(6), 719–726 (2012).

PubMed 
PubMed Central 

Google Scholar
 

Huang, Z., Yu, P. & Tang, J. Characterization of triple-negative breast cancer MDA-MB-231 cell spheroid model. OncoTargets Ther. 13, 5395–5405 (2020).


Google Scholar
 

Mazloomi, M. et al. Advanced drug delivery platforms target cancer stem cells. Asian J. Pharm. Sci. 20(3), 101036 (2025).

PubMed 
PubMed Central 

Google Scholar
 

Karimi, S. et al. For and against tumor microenvironment: Nanoparticle-based strategies for active cancer therapy. Mater. Today Bio 31, 101626 (2025).

PubMed 
PubMed Central 

Google Scholar
 

Semenza, G. L. Oxygen sensing, homeostasis, and disease. N. Engl. J. Med. 365(6), 537–547 (2011).

PubMed 

Google Scholar
 

Semenza, G. L. Hypoxia-inducible factors: Mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. Sci. 33(4), 207–214 (2012).

PubMed 
PubMed Central 

Google Scholar
 

Riffle, S., Pandey, R. N., Albert, M. & Hegde, R. S. Linking hypoxia, DNA damage and proliferation in multicellular tumor spheroids. BMC Cancer 17, 1–12 (2017).


Google Scholar
 

Jahanban-Esfahlan, R., Seidi, K. & Zarghami, N. Tumor vascular infarction: Prospects and challenges. Int. J. Hematol. 105(3), 244–256 (2017).

PubMed 

Google Scholar
 

Azizi, M. et al. Multifunctional nanostructures: Intelligent design to overcome biological barriers. Mater. Today Bio 20, 100672 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Shahpouri, M. et al. Prospects for hypoxia-based drug delivery platforms for the elimination of advanced metastatic tumors: From 3D modeling to clinical concepts. J. Control. Release 353, 1002–1022 (2023).

PubMed 

Google Scholar
 

Siim, B. G., Menke, D. R., Dorie, M. J. & Brown, J. M. Tirapazamine-induced cytotoxicity and DNA damage in transplanted tumors: Relationship to tumor hypoxia. Can. Res. 57(14), 2922–2928 (1997).


Google Scholar
 

Hong, B. et al. Chan AT-C: Hypoxia-targeting by tirapazamine (TPZ) induces preferential growth inhibition of nasopharyngeal carcinoma cells with Chk1/2 activation. Invest. New Drugs 29, 401–410 (2011).

PubMed 

Google Scholar
 

Kitchen, D. B., Decornez, H., Furr, J. R. & Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov. 3(11), 935–949 (2004).

PubMed 

Google Scholar
 

Lu, H. et al. Recent advances in the development of protein-protein interactions modulators: Mechanisms and clinical trials. Signal Transduct. Target Ther. 5(1), 213 (2020).

PubMed 
PubMed Central 

Google Scholar
 

Salemi, A., Pourseif, M. M. & Omidi, Y. Next-generation vaccines and the impacts of state-of-the-art in-silico technologies. Biologicals 69, 83–85 (2021).

PubMed 

Google Scholar
 

Tang, J. & Aittokallio, T. Network pharmacology strategies toward multi-target anticancer therapies: From computational models to experimental design principles. Curr. Pharm. Des. 20(1), 23–36 (2014).

PubMed 

Google Scholar
 

Dianat-Moghadam, H. et al. Cancer stem cells-emanated therapy resistance: Implications for liposomal drug delivery systems. J. Control. Release 288, 62–83 (2018).

PubMed 

Google Scholar
 

Hashemi, Z. et al. Engineered niosomes for cancer therapy: Classification, synthesis, and clinical applications. BioNanoScience 15(1), 34 (2024).


Google Scholar
 

Pourbakhsh, M., Jabraili, M., Akbari, M., Jaymand, M. & Jahanban Esfahlan, R. Poloxamer-based drug delivery systems: Frontiers for treatment of solid tumors. Mater. Today Bio 32, 101727 (2025).

PubMed 
PubMed Central 

Google Scholar
 

Massoumi, B. et al. A novel multi-stimuli-responsive theranostic nanomedicine based on Fe3O4@Au nanoparticles against cancer. J. Drug Dev. Ind. Pharm. 46(11), 1832–1843 (2020).


Google Scholar
 

Samadian, H. et al. A de novo theranostic nanomedicine composed of PEGylated graphene oxide and gold nanoparticles for cancer therapy. J. Mater. Res. 35(4), 430–441 (2020).

ADS 

Google Scholar
 

Ayoubi-Joshaghani, M. H. et al. Potential applications of advanced nano/hydrogels in biomedicine: Static, dynamic, multi-stage, and bioinspired. Adv. Fun. Mater. 30(45), 2004098 (2020).


Google Scholar
 

Eskandani, M., Jahanban-Esfahlan, R., Sadughi, M. M. & Jaymand, M. Thermal-responsive β-cyclodextrin-based magnetic hydrogel as a de novo nanomedicine for chemo/hyperthermia treatment of cancerous cells. Heliyon 10(11), e32183 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Derakhshankhah, H. et al. Folate-conjugated thermal-and pH-responsive magnetic hydrogel as a drug delivery nano-system for “smart” chemo/hyperthermia therapy of solid tumors. Mater. Today Commun. 30, 103148 (2022).


Google Scholar
 

Jahanban-Esfahlan, R. et al. Multi-stimuli-responsive magnetic hydrogel based on tragacanth gum as a de novo nanosystem for targeted chemo/hyperthermia treatment of cancer. J. Mater. Res. 36, 858–869 (2021).

ADS 

Google Scholar
 

Sayadnia, S., Arkan, E., Jahanban-Esfahlan, R., Sayadnia, S. & Jaymand, M. Tragacanth gum-based pH-responsive magnetic hydrogels for “smart” chemo/hyperthermia therapy of solid tumors. Polym. Adv. Technol. 32(1), 262–271 (2021).


Google Scholar
 

Massoumi, B. et al. Polymers: Electrically conductive nanofibers composed of chitosan-grafted polythiophene and poly (ε-caprolactone) as tissue engineering scaffold. Fibers Polym. 22(1), 49–58 (2021).


Google Scholar
 

Dadashi, H. et al. A rapid protocol for synthesis of chitosan nanoparticles with ideal physicochemical features. Heliyon 10(11), e32228 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Mahmudi, H. et al. Self-activating chitosan-based nanoparticles for sphingosin-1 phosphate modulator delivery and selective tumor therapy. Int. J. Biol. Macromol. 272, 132940 (2024).

PubMed 

Google Scholar
 

Jahanban-Esfahlan, A. et al. Dynamic DNA nanostructures in biomedicine: Beauty, utility and limits. J. Control. Release 315, 166–185 (2019).

PubMed 

Google Scholar
 

Jahanban-Esfahlan, R. et al. Static DNA nanostructures for cancer theranostics: Recent progress in design and applications. Nannotechnol. Sci. Appl. 2019(12), 25–46 (2019).


Google Scholar
 

Shahpouri, M. et al. Dual-stage acting dendrimeric nanoparticle for deepened chemotherapeutic drug delivery to tumor cells. Adv. Pharm. Bull. https://doi.org/10.34172/apb.2024.054 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Mollazade, M. et al. PAMAM dendrimers augment inhibitory effects of curcumin on cancer cell proliferation: possible inhibition of telomerase. Asian Pac. J. Cancer Prev. APJCP 14(11), 6925–6928 (2013).

PubMed 

Google Scholar
 

Doustmihan, A. et al. Molecular targets, therapeutic agents and multitasking nanoparticles to deal with cancer stem cells: A narrative review. J. Control. Release 363, 57–83 (2023).

PubMed 

Google Scholar
 

Baghban, R. et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun. Signal. 18, 1–19 (2020).


Google Scholar
 

Seidi, K. et al. Bioinspired hydrogels build a bridge from bench to bedside. Nano Today 39, 101157 (2021).


Google Scholar
 

Hu, C.-M.J. & Zhang, L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem. Pharm. 83(8), 1104–1111 (2012).

PubMed 

Google Scholar
 

Jahanban-Esfahlan, R. et al. Dual stimuli-responsive polymeric hollow nanocapsules as “smart” drug delivery system against cancer. Polym. Plast. Technol. Mater. 59 (13), 1492-1504 (2020).


Google Scholar
 

Ahmadi, S. M., Seyedabadi, M., Ebrahimnejad, P., Abasi, M. & Nokhodchi, A. Efficient delivery of gold nanoparticles and miRNA-33a via cationic PEGylated niosomal formulation to MCF-7 breast cancer cells. AAPS PharmSciTech 25(7), 213 (2024).

PubMed 

Google Scholar
 

Seidi, K., Jahanban-Esfahlan, R. & Zarghami, N. Tumor rim cells: From resistance to vascular targeting agents to complete tumor ablation. Tumour Biol. 39(3), 1010428317691001 (2017).

PubMed 

Google Scholar
 

Seidi, K., Neubauer, H. A., Moriggl, R., Jahanban-Esfahlan, R. & Javaheri, T. Tumor target amplification: Implications for nano drug delivery systems. J. Control. Release 275, 142–161 (2018).

PubMed 

Google Scholar
 

Tarach, P. & Janaszewska, A. Recent advances in preclinical research using PAMAM dendrimers for cancer gene therapy. Int. J. Mol. Sci. 22(6), 2912 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Fakeri, M., Haghi, M., Jahanban Esfahlan, R., Fathi, M. & Hosseinpour Feizi, M. A. Targeted apoptosis in breast cancer cells via niosome-mediated delivery of cyclophosphamide and sodium oxamate. Mol. Biol. Rep. 52(1), 139 (2025).

PubMed 

Google Scholar
 

Kuhn, M., von Mering, C., Campillos, M., Jensen, L. J. & Bork, P. STITCH: Interaction networks of chemicals and proteins. Nucl. Acids Res. 36, D684-688 (2008).

PubMed 

Google Scholar
 

UniProt, C. UniProt: The universal protein knowledgebase in 2021. Nucl. Acids Res. 49(D1), D480–D489 (2021).


Google Scholar
 

Otasek, D., Morris, J. H., Boucas, J., Pico, A. R. & Demchak, B. Cytoscape automation: Empowering workflow-based network analysis. Genome Biol. 20(1), 185 (2019).

PubMed 
PubMed Central 

Google Scholar
 

Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucl. Acids Res. 51(D1), D587–D592 (2023).

PubMed 

Google Scholar
 

Chin, C. H. et al. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 8(Suppl4), S11 (2014).

PubMed 
PubMed Central 

Google Scholar
 

Wu, Q., Peng, Z., Zhang, Y. & Yang, J. Coach-D: Improved protein-ligand binding sites prediction with refined ligand-binding poses through molecular docking. Nucl. Acids Res. 46(W1), W438–W442 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Zheng, W., Zhang, C., Bell, E. W. & Zhang, Y. I-TASSER gateway: A protein structure and function prediction server powered by XSEDE. Future Gener. Comput. Syst. 99, 73–85 (2019).

PubMed 
PubMed Central 

Google Scholar
 

Heo, L., Park, H. & Seok, C. GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucl. Acids Res. 41, W384-388 (2013).

PubMed 
PubMed Central 

Google Scholar
 

Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R. & Thornton, J. M. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8(4), 477–486 (1996).

PubMed 

Google Scholar
 

Colovos, C. & Yeates, T. O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci. 2(9), 1511–1519 (1993).

PubMed 
PubMed Central 

Google Scholar
 

Wiederstein, M. & Sippl, M. J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucl. Acids Res. 35, W407-410 (2007).

PubMed 
PubMed Central 

Google Scholar
 

Pettersen, E. F. et al. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 1605–1612 (2004).

PubMed 

Google Scholar
 

Kaveh Zenjanab, M. et al. Hyaluronic acid-targeted niosomes for effective breast cancer chemostarvation therapy. ACS Omega 9(9), 10875–10885 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Sharifi-Azad, M. et al. Codelivery of methotrexate and silibinin by niosome nanoparticles for enhanced chemotherapy of CT26 colon cancer cells. Biomed. Mater. 19(5), 055015 (2024).


Google Scholar
 

Hashemi, Z. et al. Hyaluronic acid-modified theranostic niosomes for targeted fingolimod delivery and inhibition of triple-negative breast cancer metastasis. Med. Oncol. 42(7), 256 (2025).

PubMed 

Google Scholar
 

Fathi, M. et al. Thermo-sensitive chitosan copolymer-gold hybrid nanoparticles as a nanocarrier for delivery of erlotinib. Int. J. Biol. Macromol. 106, 266–276 (2018).

PubMed 

Google Scholar
 

Dadashi, H. et al. Chitosan nanoparticles loaded with metformin and digoxin synergistically inhibit MCF-7 breast cancer cells through suppression of NOTCH-1 and HIF-1α gene expression. Int. J. Biol. Macromol. 287, 138418 (2024).

PubMed 

Google Scholar
 

Esfahlan, R. J. et al. The possible impact of obesity on androgen, progesterone and estrogen receptors (ERalpha and ERbeta) gene expression in breast cancer patients. Breast Cancer 5, 227–237 (2011).

PubMed 
PubMed Central 

Google Scholar
 

Amiryaghoubi, N. et al. Smart chitosan–folate hybrid magnetic nanoparticles for targeted delivery of doxorubicin to osteosarcoma cells. Colloids Surf. B 220, 112911 (2022).


Google Scholar
 

Khoee, S. & Yaghoobian, M. Chapter 6—Niosomes: A Novel Approach in Modern Drug Delivery Systems. In Nanostructures for Drug Delivery (ed. Andronescu, E.) 207–237 (Elsevier, 2017).


Google Scholar
 

Allen, T. M. & Cullis, P. R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 65(1), 36–48 (2013).

PubMed 

Google Scholar
 

Crucho, C. I. C. & Barros, M. T. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater. Sci. Eng. C 80, 771–784 (2017).


Google Scholar
 

Fox, L. J., Richardson, R. M. & Briscoe, W. H. PAMAM dendrimer-cell membrane interactions. Adv. Coll. Interface. Sci. 257, 1–18 (2018).


Google Scholar
 

Zenjanab, M. K., Pakchin, P. S., Fathi, M., Abdolahinia, E. D. & Adibkia, K. Niosomes containing paclitaxel and gold nanoparticles with different coating agents for efficient chemo/photothermal therapy of breast cancer. Biomed. Mater. 19(3), 035015 (2024).

ADS 

Google Scholar
 

Alimohammadvand, S. et al. Aripiprazole-loaded niosome/chitosan-gold nanoparticles for breast cancer chemo-photo therapy. BMC Biotechnol. 24(1), 108 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Chandrakala, V., Aruna, V. & Angajala, G. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems. Emerg. Mater. 5(6), 1593–1615 (2022).


Google Scholar
 

Abdelwahed, W., Degobert, G., Stainmesse, S. & Fessi, H. Freeze-drying of nanoparticles: Formulation, process and storage considerations. Adv. Drug Deliv. Rev. 58(15), 1688–1713 (2006).

PubMed 

Google Scholar
 

Samed, N., Sharma, V. & Sundaramurthy, A. Hydrogen bonded niosomes for encapsulation and release of hydrophilic and hydrophobic anti-diabetic drugs: An efficient system for oral anti-diabetic formulation. Appl. Surf. Sci. 449, 567–573 (2018).

ADS 

Google Scholar
 

Mehta, S. & Jindal, N. Formulation of tyloxapol niosomes for encapsulation, stabilization and dissolution of anti-tubercular drugs. Colloids Surf. B 101, 434–441 (2013).


Google Scholar
 

Pakchin, P. S., Fathi, M., Ghanbari, H., Saber, R. & Omidi, Y. A novel electrochemical immunosensor for ultrasensitive detection of CA125 in ovarian cancer. Biosens. Bioelectron. 153, 112029 (2020).


Google Scholar
 

Baranei, M. et al. Anticancer effect of green tea extract (GTE)-Loaded pH-responsive niosome coated with PEG against different cell lines. Mater. Today Commun. 26, 101751 (2021).


Google Scholar
 

McNerny, D. Q., Leroueil, P. R. & Baker, J. R. Understanding specific and nonspecific toxicities: A requirement for the development of dendrimer-based pharmaceuticals. Rev. Nanomed. Nanobiotechnol. 2(3), 249–259 (2010).


Google Scholar
 

Kukowska-Latallo, J. F. et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Can. Res. 65(12), 5317–5324 (2005).


Google Scholar
 

King, M. R. & Mohamed, Z. J. Dual nanoparticle drug delivery: The future of anticancer therapies?. Futur. Med. 2, 95–98 (2017).


Google Scholar
 

Liu, J. F., Jang, B., Issadore, D. & Tsourkas, A. Use of magnetic fields and nanoparticles to trigger drug release and improve tumor targeting. Rev. Nanomed. Nanobiotechnol. 11(6), e1571 (2019).


Google Scholar
 

Safari Sharafshadeh, M., Tafvizi, F., Khodarahmi, P. & Ehtesham, S. Folic acid-functionalized PEGylated niosomes co-encapsulated cisplatin and doxoribicin exhibit enhanced anticancer efficacy. Cancer Nanotechnol. 15(1), 14 (2024).


Google Scholar
 

Rezaei, T. et al. Folic acid-decorated ph-responsive nanoniosomes with enhanced endocytosis for breast cancer therapy: In vitro studies. Front. Pharmacol. 13, 851242 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Bannunah, A. M., Vllasaliu, D., Lord, J. & Stolnik, S. Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: Effect of size and surface charge. Mol. Pharm. 11(12), 4363–4373 (2014).

PubMed 

Google Scholar
 

He, C., Hu, Y., Yin, L., Tang, C. & Yin, C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31(13), 3657–3666 (2010).

PubMed 

Google Scholar
 

Albanese, A., Tang, P. S. & Chan, W. C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14, 1–16 (2012).

PubMed 

Google Scholar
 

Ma, N. et al. Influence of nanoparticle shape, size, and surface functionalization on cellular uptake. J. Nanosci. Nanotechnol. 13(10), 6485–6498 (2013).

PubMed 

Google Scholar
 

Nhan, N. et al. Anti-tumor activity of plant extracts against human breast cancer cells are different in monolayer and three-dimensional cell culture screening models: A comparison on 34 extracts. Biomed. Res. Ther. 7, 3667–3677 (2020).


Google Scholar
 

Xu, Y. et al. Introducing urea into the tirapazamine derivatives to enhance anti-cancer therapy. Nat. Sci. Rev. 11, 038 (2024).


Google Scholar
 

Saunders, M., Patterson, A., Chinje, E., Harris, A. & Stratford, I. NADPH: cytochrome c (P450) reductase activates tirapazamine (SR4233) to restore hypoxic and oxic cytotoxicity in an aerobic resistant derivative of the A549 lung cancer cell line. Br. J. Cancer 82(3), 651–656 (2000).

PubMed 
PubMed Central 

Google Scholar
 

Zhu, R. et al. Cancer-selective bioreductive chemotherapy mediated by dual hypoxia-responsive nanomedicine upon photodynamic therapy-induced hypoxia aggravation. Biomacromol 20(7), 2649–2656 (2019).


Google Scholar
 

Xie, Z. et al. Targeting tumor hypoxia with stimulus-responsive nanocarriers in overcoming drug resistance and monitoring anticancer efficacy. Acta Biomater. 71, 351–362 (2018).

PubMed 

Google Scholar
 

Ainalem, M.-L. et al. On the ability of PAMAM dendrimers and dendrimer/DNA aggregates to penetrate POPC model biomembranes. J. Phys. Chem. B 114(21), 7229–7244 (2010).

PubMed 

Google Scholar
 

Masoumi Godgaz, S., Asefnejad, A. & Bahrami, S. H. Fabrication of PEGylated SPIONs-loaded niosome for codelivery of paclitaxel and trastuzumab for breast cancer treatment: In vivo study. ACS Appl. Bio Mater. 7(5), 2951–2965 (2024).

PubMed 

Google Scholar
 

Hao, Y. et al. A tumor microenvironment-responsive poly (amidoamine) dendrimer nanoplatform for hypoxia-responsive chemo/chemodynamic therapy. J. Nanobiotechnol. 20(1), 1–15 (2022).


Google Scholar
 

Akbarzadeh, I. et al. The optimized formulation of tamoxifen-loaded niosomes efficiently induced apoptosis and cell cycle arrest in breast cancer cells. AAPS PharmSciTech 23(1), 57 (2022).

PubMed 

Google Scholar
 

Fatemizadeh, M. et al. Apoptosis induction, cell cycle arrest and anti-cancer potential of tamoxifen-curcumin loaded niosomes against MCF-7 cancer cells. Iran. J. Pathol. 17(2), 183 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Bidkar, A. P., Sanpui, P. & Ghosh, S. S. Red blood cell-membrane-coated poly (lactic-co-glycolic acid) nanoparticles for enhanced chemo-and hypoxia-activated therapy. ACS Appl. Bio Mater. 2(9), 4077–4086 (2019).

PubMed 

Google Scholar
 

Chen, H. et al. Polydopamine-coated UiO-66 nanoparticles loaded with perfluorotributylamine/tirapazamine for hypoxia-activated osteosarcoma therapy. J. Nanobiotechnol. 19, 1–18 (2021).


Google Scholar
 

Zhao, H. et al. Biomimetic decoy inhibits tumor growth and lung metastasis by reversing the drawbacks of sonodynamic therapy. Adv. Healthcare Mater. 9(1), 1901335 (2020).


Google Scholar
 

Zhang, J. et al. Suppression of hypoxia-inducible factor 1α (HIF-1α) by tirapazamine is dependent on eIF2α phosphorylation rather than the mTORC1/4E-BP1 pathway. PLoS ONE 5(11), e13910 (2010).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Balakrishnan, P. et al. Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery. Int. J. Pharm. 377(1–2), 1–8 (2009).

PubMed 

Google Scholar