Esrick, E. B. et al. Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease. N. Engl. J. Med. 384, 205–215 (2021).

CAS 
PubMed 

Google Scholar
 

Frangoul, H. et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384, 252–260 (2021).

CAS 
PubMed 

Google Scholar
 

Fu, B. et al. CRISPR-Cas9-mediated gene editing of the BCL11A enhancer for pediatric β0/β0 transfusion-dependent β-thalassemia. Nat. Med. 28, 1573–1580 (2022).

CAS 
PubMed 

Google Scholar
 

Germino-Watnick, P. et al. Hematopoietic stem cell gene-addition/editing therapy in sickle cell disease. Cells 11, 1843 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cavazzana, M., Bushman, F. D., Miccio, A., Andre-Schmutz, I. & Six, E. Gene therapy targeting haematopoietic stem cells for inherited diseases: progress and challenges. Nat. Rev. Drug Discov. 18, 447–462 (2019).

CAS 
PubMed 

Google Scholar
 

Ferrari, G., Thrasher, A. J. & Aiuti, A. Gene therapy using haematopoietic stem and progenitor cells. Nat. Rev. Genet. 22, 216–234 (2021).

CAS 
PubMed 

Google Scholar
 

Daikeler, T., Tichelli, A. & Passweg, J. Complications of autologous hematopoietic stem cell transplantation for patients with autoimmune diseases. Pediatr. Res. 71, 439–444 (2012).

CAS 
PubMed 

Google Scholar
 

Aiuti, A., Pasinelli, F. & Naldini, L. Ensuring a future for gene therapy for rare diseases. Nat. Med. 28, 1985–1988 (2022).

CAS 
PubMed 

Google Scholar
 

Li, C. et al. In vivo HSC prime editing rescues sickle cell disease in a mouse model. Blood 141, 2085–2099 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, H. et al. In vivo hematopoietic stem cell gene therapy ameliorates murine thalassemia intermedia. J. Clin. Invest. 129, 598–615 (2019).

PubMed 

Google Scholar
 

Richter, M. et al. In vivo hematopoietic stem cell transduction. Hematol. Oncol. Clin. North Am. 31, 771–785 (2017).

PubMed 
PubMed Central 

Google Scholar
 

Jung, H. N., Lee, S. Y., Lee, S., Youn, H. & Im, H. J. Lipid nanoparticles for delivery of RNA therapeutics: current status and the role of in vivo imaging. Theranostics 12, 7509–7531 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Raguram, A., Banskota, S. & Liu, D. R. Therapeutic in vivo delivery of gene editing agents. Cell 185, 2806–2827 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zong, Y., Lin, Y., Wei, T. & Cheng, Q. Lipid nanoparticle (LNP) enables mRNA delivery for cancer therapy. Adv. Mater. 35, e2303261 (2023).

PubMed 

Google Scholar
 

Musunuru, K. et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 593, 429–434 (2021).

CAS 
PubMed 

Google Scholar
 

Rothgangl, T. et al. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat. Biotechnol. 39, 949–957 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Qiu, M. et al. Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis. Proc. Natl Acad. Sci. USA 119, e2116271119 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shi, D., Toyonaga, S. & Anderson, D. G. In vivo RNA delivery to hematopoietic stem and progenitor cells via targeted lipid nanoparticles. Nano Lett. 23, 2938–2944 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zak, M. M. & Zangi, L. Lipid nanoparticles for organ-specific mRNA therapeutic delivery. Pharmaceutics 13, 1675 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Xu, Y., Golubovic, A., Xu, S., Pan, A. & Li, B. Rational design and combinatorial chemistry of ionizable lipids for RNA delivery. J. Mater. Chem. B 11, 6527–6539 (2023).

CAS 
PubMed 

Google Scholar
 

Breda, L. et al. In vivo hematopoietic stem cell modification by mRNA delivery. Science 381, 436–443 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883–891 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kurita, R. et al. Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells. PLoS ONE 8, e59890 (2013).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Traxler, E. A. et al. A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat. Med. 22, 987–990 (2016).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cheng, L. et al. Single-nucleotide-level mapping of DNA regulatory elements that control fetal hemoglobin expression. Nat. Genet. 53, 869–880 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yen, J. et al. TRIAMF: a new method for delivery of Cas9 ribonucleoprotein complex to human hematopoietic stem cells. Sci. Rep. 8, 16304 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Wu, Y. et al. Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat. Med. 25, 776–783 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ravi, N. S. et al. Identification of novel HPFH-like mutations by CRISPR base editing that elevate the expression of fetal hemoglobin. eLife 11, e65421 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kaczynski, J., Cook, T. & Urrutia, R. Sp1- and Kruppel-like transcription factors. Genome Biol. 4, 206 (2003).

PubMed 
PubMed Central 

Google Scholar
 

Doetzlhofer, A. et al. Histone deacetylase 1 can repress transcription by binding to Sp1. Mol. Cell. Biol. 19, 5504–5511 (1999).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Feng, D. & Kan, Y. W. The binding of the ubiquitous transcription factor Sp1 at the locus control region represses the expression of beta-like globin genes. Proc. Natl Acad. Sci. USA 102, 9896–9900 (2005).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

McIntosh, B. E. et al. Nonirradiated NOD,B6.SCID Il2rγ−/−KitW41/W41 (NBSGW) mice support multilineage engraftment of human hematopoietic cells. Stem Cell Rep. 4, 171–180 (2015).

CAS 

Google Scholar
 

Chang, K.-H. et al. Long-term engraftment and fetal globin induction upon BCL11A gene editing in bone-marrow-derived CD34+ hematopoietic stem and progenitor cells. Mol. Ther. Methods Clin. Dev. 4, 137–148 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gundry, M. C. et al. Highly efficient genome editing of murine and human hematopoietic progenitor cells by CRISPR/Cas9. Cell Rep. 17, 1453–1461 (2016).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Han, J. et al. In vivo delivery of CRISPR-Cas9 using lipid nanoparticles enables antithrombin gene editing for sustainable hemophilia A and B therapy. Sci. Adv. 8, eabj6901 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, B. et al. Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing. Nat. Biotechnol. 41, 1410–1415 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kim, J. et al. Engineering lipid nanoparticles for enhanced intracellular delivery of mRNA through inhalation. ACS Nano 16, 14792–14806 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Guimarães, P. P. G. et al. In vivo bone marrow microenvironment siRNA delivery using lipid-polymer nanoparticles for multiple myeloma therapy. Proc. Natl Acad. Sci. USA 120, e2215711120 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Han, X. et al. An ionizable lipid toolbox for RNA delivery. Nat. Commun. 12, 7233 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, B. et al. Enhancing the immunogenicity of lipid-nanoparticle mRNA vaccines by adjuvanting the ionizable lipid and the mRNA. Nat. Biomed. Eng. 7, 280 (2023).


Google Scholar
 

Qiu, M., Li, Y., Bloomer, H. & Xu, Q. Developing biodegradable lipid nanoparticles for intracellular mRNA delivery and genome editing. Acc. Chem. Res. 54, 4001–4011 (2021).

CAS 
PubMed 

Google Scholar
 

Li, C. et al. Single-dose MGTA-145/plerixafor leads to efficient mobilization and in vivo transduction of HSCs with thalassemia correction in mice. Blood Adv. 5, 1239–1249 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Akinc, A. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 18, 1357–1364 (2010).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tarab-Ravski, D. et al. Delivery of therapeutic RNA to the bone marrow in multiple myeloma using CD38-targeted lipid nanoparticles. Adv. Sci. 10, e2301377 (2023).


Google Scholar
 

Jain, R. et al. MicroRNAs enable mRNA therapeutics to selectively program cancer cells to self-destruct. Nucleic Acid Ther. 28, 285–296 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

CAS 
PubMed 

Google Scholar
 

Yavuz, A. et al. DLin-MC3-containing mRNA lipid nanoparticles induce an antibody Th2-biased immune response polarization in a delivery route-dependent manner in mice. Pharmaceutics 15, 1009 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pietras, E. M. et al. Functionally distinct subsets of lineage-biased multipotent progenitors control blood production in normal and regenerative conditions. Cell Stem Cell 17, 35–46 (2015).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Monopoli, M. P., Aberg, C., Salvati, A. & Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7, 779–786 (2012).

CAS 
PubMed 

Google Scholar
 

Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chen, D., Ganesh, S., Wang, W. & Amiji, M. The role of surface chemistry in serum protein corona-mediated cellular delivery and gene silencing with lipid nanoparticles. Nanoscale 11, 8760–8775 (2019).

CAS 
PubMed 

Google Scholar
 

Miao, L. et al. Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver. Nat. Commun. 11, 2424 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wirth, F., Lubosch, A., Hamelmann, S. & Nakchbandi, I. A. Fibronectin and its receptors in hematopoiesis. Cells 9, 2717 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Koo, J. et al. Evaluation of fibrinogen self-assembly: role of its αC region. J. Thromb. Haemost. 8, 2727–2735 (2010).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Koo, J. et al. Control of anti-thrombogenic properties: surface-induced self-assembly of fibrinogen fibers. Biomacromolecules 13, 1259–1268 (2012).

CAS 
PubMed 

Google Scholar
 

Monopoli, M. P. et al. Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 133, 2525–2534 (2011).

CAS 
PubMed 

Google Scholar
 

Liu, Q. et al. Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Sci. China Life Sci. 62, 1–7 (2019).

PubMed 

Google Scholar
 

Bae, S., Park, J. & Kim, J. S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473–1475 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Métais, J. Y. et al. Genome editing of HBG1 and HBG2 to induce fetal hemoglobin. Blood Adv. 3, 3379–3392 (2019).

PubMed 
PubMed Central 

Google Scholar
 

Swingle, K. L. et al. Ionizable lipid nanoparticles for in vivo mRNA delivery to the placenta during pregnancy. J. Am. Chem. Soc. 145, 4691–4706 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

PubMed 
PubMed Central 

Google Scholar
 

Kluesner, M. G. et al. EditR: a method to quantify base editing from Sanger Sequencing. CRISPR J. 1, 239–250 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.1–21.29.9 (2015).

PubMed 

Google Scholar
 

Yan, F., Powell, D. R., Curtis, D. J. & Wong, N. C. From reads to insight: a hitchhiker’s guide to ATAC-seq data analysis. Genome Biol. 21, 22 (2020).

PubMed 
PubMed Central 

Google Scholar
 

Kaya-Okur, H. S., Janssens, D. H., Henikoff, J. G., Ahmad, K. & Henikoff, S. Efficient low-cost chromatin profiling with CUT&Tag. Nat. Protoc. 15, 3264–3283 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

PubMed 
PubMed Central 

Google Scholar
 

Finn, J. D. et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 22, 2227–2235 (2018).

CAS 
PubMed 

Google Scholar
 

Kim, M. et al. Engineered ionizable lipid nanoparticles for targeted delivery of RNA therapeutics into different types of cells in the liver. Sci. Adv. 7, eabf4398 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kiel, M. J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

CAS 
PubMed 

Google Scholar
 

Wang, Q. D. mRNA‑HSCedit [Computer software]. GitHub https://github.com/wqiudao/mRNA-HSCedit (2021).