Comizzoli, P. & Holt, W. V. Recent progress in spermatology contributing to the knowledge and conservation of rare and endangered species. Annu. Rev. Anim. Biosci. 10, 469–490 (2022).

PubMed 

Google Scholar
 

Veprintsev, B. & Rott, N. Conserving genetic resources of animal species. Nature 280, 633–634 (1979).


Google Scholar
 

Loi, P. et al. Dry storage of mammalian spermatozoa and cells: state-of-the-art and possible future directions. Reprod. Fertil. Dev. 33, 82–90 (2021).

PubMed 

Google Scholar
 

Ito, D., Wakayama, S., Emura, R., Ooga, M. & Wakayama, T. Mailing viable mouse freeze-dried spermatozoa on postcards. iScience 24, 102815 (2021).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Wakayama, T. & Yanagimachi, R. Development of normal mice from oocytes injected with freeze-dried spermatozoa. Nat. Biotechnol. 16, 639–641 (1998).

PubMed 

Google Scholar
 

Kusakabe, H., Szczygiel, M. A., Whittingham, D. G. & Yanagimachi, R. Maintenance of genetic integrity in frozen and freeze-dried mouse spermatozoa. Proc. Natl. Acad. Sci. U S A. 98, 13501–13506 (2001).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Liu, J. L. et al. Freeze-dried sperm fertilization leads to full-term development in rabbits. Biol. Reprod. 70, 1776–1781 (2004).

PubMed 

Google Scholar
 

Hirabayashi, M., Kato, M., Ito, J. & Hochi, S. Viable rat offspring derived from oocytes intracytoplasmically injected with freeze-dried sperm heads. Zygote 13, 79–85 (2005).

PubMed 

Google Scholar
 

Choi, Y. H., Varner, D. D., Love, C. C., Hartman, D. L. & Hinrichs, K. Production of live foals via intracytoplasmic injection of lyophilized sperm and sperm extract in the horse. Reproduction 142, 529–538 (2011).

PubMed 

Google Scholar
 

Muneto, N. & Horiuchi, T. Full-term development of hamster embryos produced by injecting freeze dried spermatozoa into oocytes. J. Mamm. Ova Res. 28, 32–39 (2011).


Google Scholar
 

Keskintepe, L. et al. Bovine blastocyst development from oocytes injected with freeze-dried spermatozoa. Biol. Reprod. 67, 409–415 (2002).

PubMed 

Google Scholar
 

Men, N. T. et al. Effect of Trehalose on DNA integrity of freeze-dried Boar sperm, fertilization, and embryo development after intracytoplasmic sperm injection. Theriogenology 80, 1033–1044 (2013).

PubMed 

Google Scholar
 

Olaciregui, M. & Gil, L. Freeze-dried spermatozoa: A future tool? Reprod. Domest. Anim. 52 (Suppl 2), 248–254 (2017).

PubMed 

Google Scholar
 

Olaciregui, M., Luno, V., Gonzalez, N., De Blas, I. & Gil, L. Freeze-dried dog sperm: dynamics of DNA integrity. Cryobiology 71, 286–290 (2015).

PubMed 

Google Scholar
 

Tsujimoto, Y. et al. Development of feline embryos produced using freeze-dried sperm. Theriogenology 147, 71–76 (2020).

PubMed 

Google Scholar
 

Wakayama, S. et al. Tolerance of the freeze-dried mouse sperm nucleus to temperatures ranging from – 196 degrees C to 150 degrees C. Sci. Rep. 9, 5719 (2019).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Kusakabe, H. & Tateno, H. Prevention of high-temperature-induced chromosome damage in mouse spermatozoa freeze-dried using Ca(2+) chelator-containing buffer alkalinized with NaOH or KOH. Cryobiology 79, 71–77 (2017).

PubMed 

Google Scholar
 

Kusakabe, H. & Kamiguchi, Y. Chromosomal integrity of freeze-dried mouse spermatozoa after 137Cs gamma-ray irradiation. Mutat. Res. 556, 163–168 (2004).

PubMed 

Google Scholar
 

Wakayama, S. et al. Evaluating the long-term effect of space radiation on the reproductive normality of mammalian sperm preserved on the international space station. Sci. Adv. 7, eabg5554 (2021).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Wakayama, S. & Wakayama, T. Can humanity thrive beyond the galaxy?? J. Reprod. Dev. 71, 10–16 (2025).

PubMed 

Google Scholar
 

Kamada, Y. et al. Method for long-term room temperature storage of mouse freeze-dried sperm. Sci. Rep. 15, 303 (2025).

PubMed 
PubMed Central 

Google Scholar
 

Yang, L. L. et al. A novel, simplified method to prepare and preserve freeze-dried mouse sperm in plastic microtubes. J. Reprod. Dev. 69, 198–205 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Palazzese, L. et al. Reviving vacuum-dried encapsulated Ram spermatozoa via ICSI after 2 years of storage. Front. Vet. Sci. 10, 1270266 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Beilby, K. H. et al. Offspring physiology following the use of IVM, IVF and ICSI: a systematic review and meta-analysis of animal studies. Hum. Reprod. Update. 29, 272–290 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Wakayama, T. & Ogura, A. In memory of Dr. Ryuzo Yanagimachi (Yana) (1928–2023). J. Reprod. Dev.. 70, i–iv (2024).

Saragusty, J. & Loi, P. Exploring dry storage as an alternative biobanking strategy inspired by nature. Theriogenology 126, 17–27 (2019).

PubMed 

Google Scholar
 

Loi, P. et al. Advances in induced anhydrobiosis for cell and gamete storage. Trends Biotechnol (2025).

Shibasaki, I. et al. Extracting and analyzing micronuclei from mouse two-cell embryos fertilized with freeze-dried spermatozoa. Commun. Biol. 8, 6 (2025).

PubMed 
PubMed Central 

Google Scholar
 

Ito, D. et al. Effect of Trehalose on the preservation of freeze-dried mice spermatozoa at room temperature. J. Reprod. Dev. 65, 353–359 (2019).

PubMed 
PubMed Central 

Google Scholar
 

Ushigome, N. et al. Production of offspring from vacuum-dried mouse spermatozoa and assessing the effect of drying conditions on sperm DNA and embryo development. J. Reprod. Dev. 68, 262–270 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Kaneko, T. & Nakagata, N. Improvement in the long-term stability of freeze-dried mouse spermatozoa by adding of a chelating agent. Cryobiology 53, 279–282 (2006).

PubMed 

Google Scholar
 

Kamada, Y. et al. Assessing the tolerance to room temperature and viability of freeze-dried mice spermatozoa over long-term storage at room temperature under vacuum. Sci. Rep. 8, 10602 (2018).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Olaciregui, M. et al. Chelating agents in combination with Rosmarinic acid for Boar sperm freeze-drying. Reprod. Biol. 17, 193–198 (2017).

PubMed 

Google Scholar
 

Malik, K. A. Preservation of some extremely thermophilic chemolithoautotrophic bacteria by deep-freezing and liquid-drying methods. J. Microbiol. Methods. 35, 177–182 (1999).

PubMed 

Google Scholar
 

Miyamoto-Shinohara, Y., Nozawa, F., Sukenobe, J. & Imaizumi, T. Survival of yeasts stored after freeze-drying or liquid-drying. J. Gen. Appl. Microbiol. 56, 107–119 (2010).

PubMed 

Google Scholar
 

Coulibaly, I. et al. The resistance to freeze-drying and to storage was determined as the cellular ability to recover its survival rate and acidification activity. Int. J. Microbiol. 625239 (2010).

Stefanello, R. F. et al. Survival and stability of Lactobacillus fermentum and Wickerhamomyces anomalus strains upon lyophilisation with different cryoprotectant agents. Food Res. Int. 115, 90–94 (2019).

PubMed 

Google Scholar
 

de Valdez, G. F., de Giori, G. S., de Ruiz Holgado, A. A. & Oliver, G. Protective effect of adonitol on lactic acid bacteria subjected to freeze-drying. Appl. Environ. Microbiol. 45, 302–304 (1983).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Yang, K. et al. Surface characteristics and proteomic analysis insights on the response of oenococcus Oeni SD-2a to freeze-drying stress. Food Chem. 264, 377–385 (2018).

ADS 
PubMed 

Google Scholar
 

de Valdez, G. F., de Giori, G. S., de Ruiz Holgado, A. P. & Oliver, G. Effect of drying medium on residual moisture content and viability of freeze-dried lactic acid bacteria. Appl. Environ. Microbiol. 49, 413–415 (1985).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Kayode, O. T., Rotimi, D. E., Kayode, A. A. A., Olaolu, T. D. & Adeyemi, O. S. Monosodium Glutamate (MSG)-Induced Male Reproductive Dysfunction: A Mini Review. Toxics. 8 (2020).

Wu, B., Gao, H., Liu, C. & Li, W. The coupling apparatus of the sperm head and taildagger. Biol. Reprod. 102, 988–998 (2020).

PubMed 

Google Scholar
 

Vaughan, D. A., Tirado, E., Garcia, D., Datta, V. & Sakkas, D. DNA fragmentation of sperm: a radical examination of the contribution of oxidative stress and age in 16 945 semen samples. Hum. Reprod. 35, 2188–2196 (2020).

PubMed 

Google Scholar
 

Magi, S., Piccirillo, S., Amoroso, S. & Lariccia, V. Excitatory amino acid transporters (EAATs): glutamate transport and beyond. Int. J. Mol. Sci 20 (2019).

Wakayama, T., Whittingham, D. G. & Yanagimachi, R. Production of normal offspring from mouse oocytes injected with spermatozoa cryopreserved with or without cryoprotection. J. Reprod. Fertil. 112, 11–17 (1998).

PubMed 

Google Scholar
 

Takeo, T. & Nakagata, N. Reduced glutathione enhances fertility of frozen/thawed C57BL/6 mouse sperm after exposure to methyl-beta-cyclodextrin. Biol. Reprod. 85, 1066–1072 (2011).

PubMed 

Google Scholar
 

Wakayama, S., Ito, D., Ooga, M. & Wakayama, T. Production of mouse offspring from zygotes fertilized with freeze-dried spermatids. Sci. Rep. 12, 18430 (2022).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Wakayama, S., Ito, D., Hayashi, E., Ishiuchi, T. & Wakayama, T. Healthy cloned offspring derived from freeze-dried somatic cells. Nat. Commun. 13, 3666 (2022).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Wakayama, S. et al. Healthy offspring from freeze-dried mouse spermatozoa held on the international space station for 9 months. Proc. Natl. Acad. Sci. U S A. 114, 5988–5993 (2017).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Nakanishi, T. et al. Real-time observation of acrosomal dispersal from mouse sperm using GFP as a marker protein. FEBS Lett. 449, 277–283 (1999).

PubMed 

Google Scholar
 

Quinn, P., Moinipanah, R., Steinberg, J. M. & Weathersbee, P. S. Successful human in vitro fertilization using a modified human tubal fluid medium lacking glucose and phosphate ions. Fertil. Steril. 63, 922–924 (1995).

PubMed 

Google Scholar
 

Kimura, Y. & Yanagimachi, R. Intracytoplasmic sperm injection in the mouse. Biol. Reprod. 52, 709–720 (1995).

PubMed 

Google Scholar
 

Chatot, C. L., Lewis, J. L., Torres, I. & Ziomek, C. A. Development of 1-cell embryos from different strains of mice in CZB medium. Biol. Reprod. 42, 432–440 (1990).

PubMed 

Google Scholar
 

Kanemori, Y. et al. Biogenesis of sperm acrosome is regulated by pre-mRNA alternative splicing of Acrbp in the mouse. Proc. Natl. Acad. Sci. U S A. 113, E3696–3705 (2016).

PubMed 
PubMed Central 

Google Scholar
 

Haines, G., Marples, B., Daniel, P. & Morris, I. DNA damage in human and mouse spermatozoa after in vitro-irradiation assessed by the comet assay. Adv. Exp. Med. Biol. 444, 79–91 (1998). discussion 92 – 73.

PubMed 

Google Scholar
 

Hirose, N. et al. Birth of offspring from spermatid or somatic cell by co-injection of PLCzeta-cRNA. Reproduction 160, 319–330 (2020).

PubMed 

Google Scholar
 

Wakayama, T., Perry, A. C., Zuccotti, M., Johnson, K. R. & Yanagimachi, R. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374 (1998).

ADS 
PubMed 

Google Scholar
 

Wakayama, S. et al. Effect of microgravity on mammalian embryo development evaluated at the international space station. iScience 26, 108177 (2023).

ADS 
PubMed 
PubMed Central 

Google Scholar
Â