Comizzoli, P. & Holt, W. V. Recent progress in spermatology contributing to the knowledge and conservation of rare and endangered species. Annu. Rev. Anim. Biosci. 10, 469–490 (2022).
Veprintsev, B. & Rott, N. Conserving genetic resources of animal species. Nature 280, 633–634 (1979).
Loi, P. et al. Dry storage of mammalian spermatozoa and cells: state-of-the-art and possible future directions. Reprod. Fertil. Dev. 33, 82–90 (2021).
Ito, D., Wakayama, S., Emura, R., Ooga, M. & Wakayama, T. Mailing viable mouse freeze-dried spermatozoa on postcards. iScience 24, 102815 (2021).
Wakayama, T. & Yanagimachi, R. Development of normal mice from oocytes injected with freeze-dried spermatozoa. Nat. Biotechnol. 16, 639–641 (1998).
Kusakabe, H., Szczygiel, M. A., Whittingham, D. G. & Yanagimachi, R. Maintenance of genetic integrity in frozen and freeze-dried mouse spermatozoa. Proc. Natl. Acad. Sci. U S A. 98, 13501–13506 (2001).
Liu, J. L. et al. Freeze-dried sperm fertilization leads to full-term development in rabbits. Biol. Reprod. 70, 1776–1781 (2004).
Hirabayashi, M., Kato, M., Ito, J. & Hochi, S. Viable rat offspring derived from oocytes intracytoplasmically injected with freeze-dried sperm heads. Zygote 13, 79–85 (2005).
Choi, Y. H., Varner, D. D., Love, C. C., Hartman, D. L. & Hinrichs, K. Production of live foals via intracytoplasmic injection of lyophilized sperm and sperm extract in the horse. Reproduction 142, 529–538 (2011).
Muneto, N. & Horiuchi, T. Full-term development of hamster embryos produced by injecting freeze dried spermatozoa into oocytes. J. Mamm. Ova Res. 28, 32–39 (2011).
Keskintepe, L. et al. Bovine blastocyst development from oocytes injected with freeze-dried spermatozoa. Biol. Reprod. 67, 409–415 (2002).
Men, N. T. et al. Effect of Trehalose on DNA integrity of freeze-dried Boar sperm, fertilization, and embryo development after intracytoplasmic sperm injection. Theriogenology 80, 1033–1044 (2013).
Olaciregui, M. & Gil, L. Freeze-dried spermatozoa: A future tool? Reprod. Domest. Anim. 52 (Suppl 2), 248–254 (2017).
Olaciregui, M., Luno, V., Gonzalez, N., De Blas, I. & Gil, L. Freeze-dried dog sperm: dynamics of DNA integrity. Cryobiology 71, 286–290 (2015).
Tsujimoto, Y. et al. Development of feline embryos produced using freeze-dried sperm. Theriogenology 147, 71–76 (2020).
Wakayama, S. et al. Tolerance of the freeze-dried mouse sperm nucleus to temperatures ranging from – 196 degrees C to 150 degrees C. Sci. Rep. 9, 5719 (2019).
Kusakabe, H. & Tateno, H. Prevention of high-temperature-induced chromosome damage in mouse spermatozoa freeze-dried using Ca(2+) chelator-containing buffer alkalinized with NaOH or KOH. Cryobiology 79, 71–77 (2017).
Kusakabe, H. & Kamiguchi, Y. Chromosomal integrity of freeze-dried mouse spermatozoa after 137Cs gamma-ray irradiation. Mutat. Res. 556, 163–168 (2004).
Wakayama, S. et al. Evaluating the long-term effect of space radiation on the reproductive normality of mammalian sperm preserved on the international space station. Sci. Adv. 7, eabg5554 (2021).
Wakayama, S. & Wakayama, T. Can humanity thrive beyond the galaxy?? J. Reprod. Dev. 71, 10–16 (2025).
Kamada, Y. et al. Method for long-term room temperature storage of mouse freeze-dried sperm. Sci. Rep. 15, 303 (2025).
Yang, L. L. et al. A novel, simplified method to prepare and preserve freeze-dried mouse sperm in plastic microtubes. J. Reprod. Dev. 69, 198–205 (2023).
Palazzese, L. et al. Reviving vacuum-dried encapsulated Ram spermatozoa via ICSI after 2 years of storage. Front. Vet. Sci. 10, 1270266 (2023).
Beilby, K. H. et al. Offspring physiology following the use of IVM, IVF and ICSI: a systematic review and meta-analysis of animal studies. Hum. Reprod. Update. 29, 272–290 (2023).
Wakayama, T. & Ogura, A. In memory of Dr. Ryuzo Yanagimachi (Yana) (1928–2023). J. Reprod. Dev.. 70, i–iv (2024).
Saragusty, J. & Loi, P. Exploring dry storage as an alternative biobanking strategy inspired by nature. Theriogenology 126, 17–27 (2019).
Loi, P. et al. Advances in induced anhydrobiosis for cell and gamete storage. Trends Biotechnol (2025).
Shibasaki, I. et al. Extracting and analyzing micronuclei from mouse two-cell embryos fertilized with freeze-dried spermatozoa. Commun. Biol. 8, 6 (2025).
Ito, D. et al. Effect of Trehalose on the preservation of freeze-dried mice spermatozoa at room temperature. J. Reprod. Dev. 65, 353–359 (2019).
Ushigome, N. et al. Production of offspring from vacuum-dried mouse spermatozoa and assessing the effect of drying conditions on sperm DNA and embryo development. J. Reprod. Dev. 68, 262–270 (2022).
Kaneko, T. & Nakagata, N. Improvement in the long-term stability of freeze-dried mouse spermatozoa by adding of a chelating agent. Cryobiology 53, 279–282 (2006).
Kamada, Y. et al. Assessing the tolerance to room temperature and viability of freeze-dried mice spermatozoa over long-term storage at room temperature under vacuum. Sci. Rep. 8, 10602 (2018).
Olaciregui, M. et al. Chelating agents in combination with Rosmarinic acid for Boar sperm freeze-drying. Reprod. Biol. 17, 193–198 (2017).
Malik, K. A. Preservation of some extremely thermophilic chemolithoautotrophic bacteria by deep-freezing and liquid-drying methods. J. Microbiol. Methods. 35, 177–182 (1999).
Miyamoto-Shinohara, Y., Nozawa, F., Sukenobe, J. & Imaizumi, T. Survival of yeasts stored after freeze-drying or liquid-drying. J. Gen. Appl. Microbiol. 56, 107–119 (2010).
Coulibaly, I. et al. The resistance to freeze-drying and to storage was determined as the cellular ability to recover its survival rate and acidification activity. Int. J. Microbiol. 625239 (2010).
Stefanello, R. F. et al. Survival and stability of Lactobacillus fermentum and Wickerhamomyces anomalus strains upon lyophilisation with different cryoprotectant agents. Food Res. Int. 115, 90–94 (2019).
de Valdez, G. F., de Giori, G. S., de Ruiz Holgado, A. A. & Oliver, G. Protective effect of adonitol on lactic acid bacteria subjected to freeze-drying. Appl. Environ. Microbiol. 45, 302–304 (1983).
Yang, K. et al. Surface characteristics and proteomic analysis insights on the response of oenococcus Oeni SD-2a to freeze-drying stress. Food Chem. 264, 377–385 (2018).
de Valdez, G. F., de Giori, G. S., de Ruiz Holgado, A. P. & Oliver, G. Effect of drying medium on residual moisture content and viability of freeze-dried lactic acid bacteria. Appl. Environ. Microbiol. 49, 413–415 (1985).
Kayode, O. T., Rotimi, D. E., Kayode, A. A. A., Olaolu, T. D. & Adeyemi, O. S. Monosodium Glutamate (MSG)-Induced Male Reproductive Dysfunction: A Mini Review. Toxics. 8 (2020).
Wu, B., Gao, H., Liu, C. & Li, W. The coupling apparatus of the sperm head and taildagger. Biol. Reprod. 102, 988–998 (2020).
Vaughan, D. A., Tirado, E., Garcia, D., Datta, V. & Sakkas, D. DNA fragmentation of sperm: a radical examination of the contribution of oxidative stress and age in 16 945 semen samples. Hum. Reprod. 35, 2188–2196 (2020).
Magi, S., Piccirillo, S., Amoroso, S. & Lariccia, V. Excitatory amino acid transporters (EAATs): glutamate transport and beyond. Int. J. Mol. Sci 20 (2019).
Wakayama, T., Whittingham, D. G. & Yanagimachi, R. Production of normal offspring from mouse oocytes injected with spermatozoa cryopreserved with or without cryoprotection. J. Reprod. Fertil. 112, 11–17 (1998).
Takeo, T. & Nakagata, N. Reduced glutathione enhances fertility of frozen/thawed C57BL/6 mouse sperm after exposure to methyl-beta-cyclodextrin. Biol. Reprod. 85, 1066–1072 (2011).
Wakayama, S., Ito, D., Ooga, M. & Wakayama, T. Production of mouse offspring from zygotes fertilized with freeze-dried spermatids. Sci. Rep. 12, 18430 (2022).
Wakayama, S., Ito, D., Hayashi, E., Ishiuchi, T. & Wakayama, T. Healthy cloned offspring derived from freeze-dried somatic cells. Nat. Commun. 13, 3666 (2022).
Wakayama, S. et al. Healthy offspring from freeze-dried mouse spermatozoa held on the international space station for 9 months. Proc. Natl. Acad. Sci. U S A. 114, 5988–5993 (2017).
Nakanishi, T. et al. Real-time observation of acrosomal dispersal from mouse sperm using GFP as a marker protein. FEBS Lett. 449, 277–283 (1999).
Quinn, P., Moinipanah, R., Steinberg, J. M. & Weathersbee, P. S. Successful human in vitro fertilization using a modified human tubal fluid medium lacking glucose and phosphate ions. Fertil. Steril. 63, 922–924 (1995).
Kimura, Y. & Yanagimachi, R. Intracytoplasmic sperm injection in the mouse. Biol. Reprod. 52, 709–720 (1995).
Chatot, C. L., Lewis, J. L., Torres, I. & Ziomek, C. A. Development of 1-cell embryos from different strains of mice in CZB medium. Biol. Reprod. 42, 432–440 (1990).
Kanemori, Y. et al. Biogenesis of sperm acrosome is regulated by pre-mRNA alternative splicing of Acrbp in the mouse. Proc. Natl. Acad. Sci. U S A. 113, E3696–3705 (2016).
Haines, G., Marples, B., Daniel, P. & Morris, I. DNA damage in human and mouse spermatozoa after in vitro-irradiation assessed by the comet assay. Adv. Exp. Med. Biol. 444, 79–91 (1998). discussion 92 – 73.
Hirose, N. et al. Birth of offspring from spermatid or somatic cell by co-injection of PLCzeta-cRNA. Reproduction 160, 319–330 (2020).
Wakayama, T., Perry, A. C., Zuccotti, M., Johnson, K. R. & Yanagimachi, R. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374 (1998).
Wakayama, S. et al. Effect of microgravity on mammalian embryo development evaluated at the international space station. iScience 26, 108177 (2023).