Fijarczyk, A. & Babik, W. Detecting balancing selection in genomes: limits and prospects. Mol. Ecol. 24, 3529–3545 (2015).

CAS 
PubMed 

Google Scholar
 

Kloch, A. et al. Signatures of balancing selection in toll-like receptor (TLRs) genes—novel insights from a free-living rodent. Sci. Rep. 8, 8361 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Quéméré, E. et al. Pathogen‐mediated selection favours the maintenance of innate immunity gene polymorphism in a widespread wild ungulate. J. Evol. Biol. 34, 1156–1166 (2021).

PubMed 

Google Scholar
 

Wegner, K. M., Kalbe, M., Kurtz, J., Reusch, T. B. H. & Milinski, M. Parasite selection for immunogenetic optimality. Science 301, 1343 (2003).

CAS 
PubMed 

Google Scholar
 

Wroblewski, E. E. et al. Malaria-driven adaptation of MHC class I in wild bonobo populations. Nat. Commun. 14, 1033 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Radwan, J., Babik, W., Kaufman, J., Lenz, T. L. & Winternitz, J. Advances in the evolutionary understanding of MHC polymorphism. Trends Genet. 36, 298–311 (2020).

CAS 
PubMed 

Google Scholar
 

Sommer, S. The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front. Zool. 2, 16 (2005).

PubMed 
PubMed Central 

Google Scholar
 

Kaufman, J. Unfinished business: evolution of the MHC and the adaptive immune system of jawed vertebrates. Annu. Rev. Immunol. 36, 383–409 (2018).

CAS 
PubMed 

Google Scholar
 

Spurgin, L. G. & Richardson, D. S. How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc. R. Soc. B 277, 979–988 (2010).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Takahata, N. & Nei, M. Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics 124, 967–978 (1990).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Borghans, J. A. M., Beltman, J. B. & De Boer, R. J. MHC polymorphism under host–pathogen coevolution. Immunogenetics 55, 732–739 (2004).

CAS 
PubMed 

Google Scholar
 

Eizaguirre, C., Lenz, T. L., Kalbe, M. & Milinski, M. Rapid and adaptive evolution of MHC genes under parasite selection in experimental vertebrate populations. Nat. Commun. 3, 621 (2012).

PubMed 

Google Scholar
 

Kubinak, J. L., Ruff, J. S., Hyzer, C. W., Slev, P. R. & Potts, W. K. Experimental viral evolution to specific host MHC genotypes reveals fitness and virulence trade-offs in alternative MHC types. Proc. Natl Acad. Sci. USA 109, 3422–3427 (2012).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Phillips, K. P. et al. Immunogenetic novelty confers a selective advantage in host–pathogen coevolution. Proc. Natl Acad. Sci. USA 115, 1552–1557 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bolnick, D. I. & Stutz, W. E. Frequency dependence limits divergent evolution by favouring rare immigrants over residents. Nature 546, 285–288 (2017).

CAS 
PubMed 

Google Scholar
 

Schmid, D. W. et al. MHC class II genes mediate susceptibility and resistance to coronavirus infections in bats. Mol. Ecol. 32, 3989–4002 (2023).

CAS 
PubMed 

Google Scholar
 

Bonneaud, C., Perez-Tris, J., Federici, P., Chastel, O. & Sorci, G. Major histocompatibility alleles associated with local resistance to malaria in a passerine. Evolution 60, 383–389 (2006).

CAS 
PubMed 

Google Scholar
 

Brisson, D. Negative frequency-dependent selection is frequently confounding. Front. Ecol. Evol. 6, 10 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Bernatchez, L. & Landry, C. MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J. Evol. Biol. 16, 363–377 (2003).

CAS 
PubMed 

Google Scholar
 

Oliver, M. K., Lambin, X., Cornulier, T. & Piertney, S. B. Spatio-temporal variation in the strength and mode of selection acting on major histocompatibility complex diversity in water vole (Arvicola terrestris) metapopulations. Mol. Ecol. 18, 80–92 (2009).

CAS 
PubMed 

Google Scholar
 

Acevedo-Whitehouse, K., Gulland, F. M. & Bowen, L. MHC class II DRB diversity predicts antigen recognition and is associated with disease severity in California sea lions naturally infected with Leptospira interrogans. Infect. Genet. Evol. 57, 158–165 (2018).

CAS 
PubMed 

Google Scholar
 

Lenz, T. L., Wells, K., Pfeiffer, M. & Sommer, S. Diverse MHC IIB allele repertoire increases parasite resistance and body condition in the long-tailed giant rat (Leopoldamys sabanus). BMC Evol. Biol. 9, 269 (2009).

PubMed 
PubMed Central 

Google Scholar
 

Oliver, M. K., Telfer, S. & Piertney, S. B. Major histocompatibility complex (MHC) heterozygote superiority to natural multi-parasite infections in the water vole (Arvicola terrestris). Proc. R. Soc. B 276, 1119–1128 (2008).

PubMed Central 

Google Scholar
 

Eizaguirre, C., Lenz, T. L., Kalbe, M. & Milinski, M. Divergent selection on locally adapted major histocompatibility complex immune genes experimentally proven in the field. Ecol. Lett. 15, 723–731 (2012).

PubMed 
PubMed Central 

Google Scholar
 

Landry, C. & Bernatchez, L. Comparative analysis of population structure across environments and geographical scales at major histocompatibility complex and microsatellite loci in Atlantic salmon (Salmo salar). Mol. Ecol. 10, 2525–2539 (2001).

CAS 
PubMed 

Google Scholar
 

Ejsmond, M. J. & Radwan, J. Red Queen processes drive positive selection on major histocompatibility complex (MHC) genes. PLoS Comput. Biol. 11, e1004627 (2015).

PubMed 
PubMed Central 

Google Scholar
 

Ejsmond, M. J., Babik, W. & Radwan, J. MHC allele frequency distributions under parasite-driven selection: a simulation model. BMC Evol. Biol. 10, 332 (2010).

PubMed 
PubMed Central 

Google Scholar
 

Westerdahl, H., Hansson, B., Bensch, S. & Hasselquist, D. Between‐year variation of MHC allele frequencies in great reed warblers: selection or drift? J. Evol. Biol. 17, 485–492 (2004).

CAS 
PubMed 

Google Scholar
 

Charbonnel, N. & Pemberton, J. A long-term genetic survey of an ungulate population reveals balancing selection acting on MHC through spatial and temporal fluctuations in selection. Heredity 95, 377–388 (2005).

CAS 
PubMed 

Google Scholar
 

Global Tuberculosis Report 2023 (Global Tuberculosis Programme, 2023).

Reis, A. C., Ramos, B., Pereira, A. C. & Cunha, M. V. The hard numbers of tuberculosis epidemiology in wildlife: a meta‐regression and systematic review. Transbound. Emerg. Dis. 68, 3257–3276 (2021).

PubMed 

Google Scholar
 

Fernandez-de-Mera, I. G. et al. Impact of major histocompatibility complex class II polymorphisms on Iberian red deer parasitism and life history traits. Infect. Genet. Evol. 9, 1232–1239 (2009).

CAS 
PubMed 

Google Scholar
 

Galindo, R. C. et al. Gene expression profiles of European wild boar naturally infected with Mycobacterium bovis. Vet. Immunol. Immunopathol. 129, 119–125 (2009).

CAS 
PubMed 

Google Scholar
 

Sveinbjornsson, G. et al. HLA class II sequence variants influence tuberculosis risk in populations of European ancestry. Nat. Genet. 48, 318–322 (2016).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Waters, W. et al. MHC class II-restricted, CD4+ T-cell proliferative responses of peripheral blood mononuclear cells from Mycobacterium bovis-infected white-tailed deer. Vet. Immunol. Immunopathol. 76, 215–229 (2000).

CAS 
PubMed 

Google Scholar
 

Clutton-Brock, T. & Manser, M. in Cooperative Breeding in Vertebrates: Studies of Ecology, Evolution, and Behavior (eds Koenig, W. D. & Dickinson, J. L.) 294–317 (Cambridge Univ. Press, 2016); https://doi.org/10.1017/CBO9781107338357.018

Young, A. J. et al. Stress and the suppression of subordinate reproduction in cooperatively breeding meerkats. Proc. Natl Acad. Sci. USA 103, 12005–12010 (2006).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dyble, M., Houslay, T. M., Manser, M. B. & Clutton-Brock, T. Intergroup aggression in meerkats. Proc. R. Soc. B 286, 20191993 (2019).

PubMed 
PubMed Central 

Google Scholar
 

Müller‐Klein, N. et al. Two decades of tuberculosis surveillance reveal disease spread, high levels of exposure and mortality and marked variation in disease progression in wild meerkats. Transbound. Emerg. Dis. 69, 3274–3284 (2022).

PubMed 

Google Scholar
 

Parsons, S. D. C., Drewe, J. A., Gey Van Pittius, N. C., Warren, R. M. & Van Helden, P. D. Novel cause of tuberculosis in meerkats, South Africa. Emerg. Infect. Dis. 19, 2004–2007 (2013).

PubMed 
PubMed Central 

Google Scholar
 

Drewe, J. A. Who infects whom? Social networks and tuberculosis transmission in wild meerkats. Proc. Biol. Sci. 277, 633–642 (2010).

PubMed 

Google Scholar
 

Donadio, J. et al. Characterizing tuberculosis progression in wild meerkats (Suricata suricatta) from fecal samples and clinical signs. J. Wildl. Dis. 58, 309–321 (2022).

PubMed 

Google Scholar
 

Drewe, J. A., Foote, A. K., Sutcliffe, R. L. & Pearce, G. P. Pathology of Mycobacterium bovis infection in wild meerkats (Suricata suricatta). J. Comp. Pathol. 140, 12–24 (2009).

CAS 
PubMed 

Google Scholar
 

Migalska, M. et al. Long term patterns of association between MHC and helminth burdens in the bank vole support Red Queen dynamics. Mol. Ecol. 31, 3400–3415 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Huang, W. et al. Contemporary selection on MHC genes in a free‐living ruminant population. Ecol. Lett. 25, 828–838 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Hess, C. M., Wang, Z. & Edwards, S. V. Evolutionary genetics of Carpodacus mexicanus, a recently colonized host of a bacterial pathogen, Mycoplasma gallisepticum. Genetica 129, 217–225 (2007).

PubMed 

Google Scholar
 

Winternitz, J. C., Wares, J. P., Yabsley, M. J. & Altizer, S. Wild cyclic voles maintain high neutral and MHC diversity without strong evidence for parasite-mediated selection. Evol. Ecol. 28, 957–975 (2014).


Google Scholar
 

Fraser, B. A., Ramnarine, I. W. & Neff, B. D. Temporal variation at the MHC class IIb in wild populations of the guppy (Poecilia reticulata). Evolution 64, 2086–2096 (2010).

PubMed 

Google Scholar
 

Brouwer, L. et al. MHC-dependent survival in a wild population: evidence for hidden genetic benefits gained through extra-pair fertilizations. Mol. Ecol. 19, 3444–3455 (2010).

PubMed 

Google Scholar
 

Worley, K. et al. MHC heterozygosity and survival in red junglefowl. Mol. Ecol. 19, 3064–3075 (2010).

PubMed 

Google Scholar
 

Savage, A. E., Mulder, K. P., Torres, T. & Wells, S. Lost but not forgotten: MHC genotypes predict overwinter survival despite depauperate MHC diversity in a declining frog. Conserv. Genet. 19, 309–322 (2018).

CAS 

Google Scholar
 

Kloch, A., Baran, K., Buczek, M., Konarzewski, M. & Radwan, J. MHC influences infection with parasites and winter survival in the root vole Microtus oeconomus. Evol. Ecol. 27, 635–653 (2013).


Google Scholar
 

Sauermann, U. et al. Mhc class I haplotypes associated with survival time in simian immunodeficiency virus (SIV)-infected rhesus macaques. Genes Immun. 9, 69–80 (2008).

CAS 
PubMed 

Google Scholar
 

Chandra, P., Grigsby, S. J. & Philips, J. A. Immune evasion and provocation by Mycobacterium tuberculosis. Nat. Rev. Microbiol. 20, 750–766 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

de Martino, M., Lodi, L., Galli, L. & Chiappini, E. Immune response to Mycobacterium tuberculosis: a narrative review. Front. Pediatr. 7, 350 (2019).

PubMed 
PubMed Central 

Google Scholar
 

Ferluga, J., Yasmin, H., Al-Ahdal, M. N., Bhakta, S. & Kishore, U. Natural and trained innate immunity against Mycobacterium tuberculosis. Immunobiology 225, 151951 (2020).

CAS 
PubMed 

Google Scholar
 

Ndong Sima, C. A. A. et al. The immunogenetics of tuberculosis (TB) susceptibility. Immunogenetics 75, 215–230 (2023).

PubMed 

Google Scholar
 

Orme, I. M., Robinson, R. T. & Cooper, A. M. The balance between protective and pathogenic immune responses in the TB-infected lung. Nat. Immunol. 16, 57–63 (2015).

CAS 
PubMed 

Google Scholar
 

Kalbe, M. et al. Lifetime reproductive success is maximized with optimal major histocompatibility complex diversity. Proc. R. Soc. B 276, 925–934 (2008).

PubMed Central 

Google Scholar
 

Canal, D. et al. MHC class II supertypes affect survival and lifetime reproductive success in a migratory songbird. Mol. Ecol. 33, e17554 (2024).

CAS 
PubMed 

Google Scholar
 

Sepil, I., Lachish, S. & Sheldon, B. C. MHC-linked survival and lifetime reproductive success in a wild population of great tits. Mol. Ecol. 22, 384–396 (2013).

PubMed 

Google Scholar
 

Paterson, S., Wilson, K. & Pemberton, J. M. Major histocompatibility complex variation associated with juvenile survival and parasite resistance in a large unmanaged ungulate population (Ovis aries L.). Proc. Natl Acad. Sci. USA 95, 3714–3719 (1998).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Arora, J. et al. HLA heterozygote advantage against HIV-1 is driven by quantitative and qualitative differences in HLA allele-specific peptide presentation. Mol. Biol. Evol. 37, 639–650 (2020).

CAS 
PubMed 

Google Scholar
 

Froeschke, G. & Sommer, S. MHC class II DRB variability and parasite load in the striped mouse (Rhabdomys pumilio) in the Southern Kalahari. Mol. Biol. Evol. 22, 1254–1259 (2005).

CAS 
PubMed 

Google Scholar
 

Dippenaar, A. et al. Whole genome sequence analysis of Mycobacterium suricattae. Tuberculosis 95, 682–688 (2015).

CAS 
PubMed 

Google Scholar
 

Olayemi, A. et al. MHC-I alleles mediate clearance and antibody response to the zoonotic Lassa virus in Mastomys rodent reservoirs. PLoS Negl. Trop. Dis. 18, e0011984 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schad, J., Dechmann, D. K., Voigt, C. C. & Sommer, S. Evidence for the ‘good genes’ model: association of MHC class II DRB alleles with ectoparasitism and reproductive state in the neotropical lesser bulldog bat, Noctilio albiventris. PLoS ONE 7, e37101 (2012).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Westerdahl, H. et al. Associations between malaria and MHC genes in a migratory songbird. Proc. R. Soc. B 272, 1511–1518 (2005).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fleischer, R. et al. Immunogenetic-pathogen networks shrink in Tome’s spiny rat, a generalist rodent inhabiting disturbed landscapes. Commun. Biol. 7, 1–11 (2024).


Google Scholar
 

Alexander, K. A. et al. Emerging tuberculosis pathogen hijacks social communication behavior in the group-living banded mongoose (Mungos mungo). mBio https://doi.org/10.1128/mbio.00281-16 (2016).

Patterson, S., Drewe, J. A., Pfeiffer, D. U. & Clutton‐Brock, T. H. Social and environmental factors affect tuberculosis related mortality in wild meerkats. J. Anim. Ecol. 86, 442–450 (2017).

PubMed 
PubMed Central 

Google Scholar
 

Mares, R., Bateman, A. W., English, S., Clutton-Brock, T. H. & Young, A. J. Timing of predispersal prospecting is influenced by environmental, social and state-dependent factors in meerkats. Anim. Behav. 88, 185–193 (2014).


Google Scholar
 

Maag, N., Cozzi, G., Clutton-Brock, T. & Ozgul, A. Density-dependent dispersal strategies in a cooperative breeder. Ecology 99, 1932–1941 (2018).

PubMed 

Google Scholar
 

Paniw, M. et al. Higher temperature extremes exacerbate negative disease effects in a social mammal. Nat. Clim. Chang. 12, 284–290 (2022).


Google Scholar
 

Paniw, M., Maag, N., Cozzi, G., Clutton-Brock, T. & Ozgul, A. Life history responses of meerkats to seasonal changes in extreme environments. Science 363, 631–635 (2019).

CAS 
PubMed 

Google Scholar
 

Risely, A. et al. Climate change drives loss of bacterial gut mutualists at the expense of host survival in wild meerkats. Glob. Change Biol. 29, 5816–5828 (2023).

CAS 

Google Scholar
 

Alexander, K. A., Sanderson, C. E. & Laver, P. N. in Tuberculosis, Leprosy and Mycobacterial Diseases of Man and Animals: The Many Hosts of Mycobacteria (eds Mukundan, H. et al.) 386–401 (CABI, 2015); https://doi.org/10.1079/9781780643960.0386

Gortázar, C., De La Fuente, J., Perelló, A. & Domínguez, L. Will we ever eradicate animal tuberculosis? Ir. Vet. J. 76, 24 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Thorley, J., Duncan, C., Gaynor, D., Manser, M. B. & Clutton-Brock, T. Disentangling the effects of temperature and rainfall on the population dynamics of Kalahari meerkats. Oikos 2025, e10988 (2025).


Google Scholar
 

Duncan, C., Manser, M. B. & Clutton‐Brock, T. Decline and fall: the causes of group failure in cooperatively breeding meerkats. Ecol. Evol. 11, 14459–14474 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Van de Ven, T. M., Fuller, A. & Clutton‐Brock, T. H. Effects of climate change on pup growth and survival in a cooperative mammal, the meerkat. Funct. Ecol. 34, 194–202 (2020).


Google Scholar
 

Kutsukake, N. & Clutton-Brock, T. H. The number of subordinates moderates intrasexual competition among males in cooperatively breeding meerkats. Proc. R. Soc. B 275, 209–216 (2007).

PubMed Central 

Google Scholar
 

Clutton‐Brock, T. et al. Reproduction and survival of suricates (Suricata suricatta) in the southern Kalahari. Afr. J. Eco 37, 69–80 (1999).


Google Scholar
 

Nielsen, J. F. et al. Inbreeding and inbreeding depression of early life traits in a cooperative mammal. Mol. Ecol. 21, 2788–2804 (2012).

PubMed 

Google Scholar
 

Spong, G. F., Hodge, S. J., Young, A. J. & Clutton‐Brock, T. H. Factors affecting the reproductive success of dominant male meerkats. Mol. Ecol. 17, 2287–2299 (2008).

PubMed 

Google Scholar
 

Coulon, A. GENHET: an easy‐to‐use R function to estimate individual heterozygosity. Mol. Ecol. Resour. 10, 167–169 (2010).

CAS 
PubMed 

Google Scholar
 

Gillingham, M. A. et al. A novel workflow to improve genotyping of multigene families in wildlife species: an experimental set‐up with a known model system. Mol. Ecol. Resour. 21, 982–998 (2021).

CAS 
PubMed 

Google Scholar
 

Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dudchenko, O. et al. The Juicebox Assembly Tools module facilitates de novo assembly of mammalian genomes with chromosome-length scaffolds for under $1000. Preprint at bioRxiv https://doi.org/10.1101/254797 (2018).

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

CAS 
PubMed 

Google Scholar
 

Silver, L. W. et al. A targeted approach to investigating immune genes of an iconic Australian marsupial. Mol. Ecol. 31, 3286–3303 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Peel, E. et al. Best genome sequencing strategies for annotation of complex immune gene families in wildlife. GigaScience 11, giac100 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Lighten, J. et al. Evolutionary genetics of immunological supertypes reveals two faces of the Red Queen. Nat. Commun. 8, 1294 (2017).

PubMed 
PubMed Central 

Google Scholar
 

Schwensow, N., Fietz, J., Dausmann, K. H. & Sommer, S. Neutral versus adaptive genetic variation in parasite resistance: importance of major histocompatibility complex supertypes in a free-ranging primate. Heredity 99, 265–277 (2007).

CAS 
PubMed 

Google Scholar
 

Sepil, I., Lachish, S., Hinks, A. E. & Sheldon, B. C. MHC supertypes confer both qualitative and quantitative resistance to avian malaria infections in a wild bird population. Proc. R. Soc. B 280, 20130134 (2013).

PubMed 
PubMed Central 

Google Scholar
 

Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

CAS 
PubMed 

Google Scholar
 

Sandberg, M., Eriksson, L., Jonsson, J., Sjöström, M. & Wold, S. New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. J. Med. Chem. 41, 2481–2491 (1998).

CAS 
PubMed 

Google Scholar
 

Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).

PubMed 
PubMed Central 

Google Scholar
 

Roved, J., Hansson, B., Stervander, M., Hasselquist, D. & Westerdahl, H. MHCtools—an R package for MHC high‐throughput sequencing data: genotyping, haplotype and supertype inference, and downstream genetic analyses in non‐model organisms. Mol. Ecol. Resour. 22, 2775–2792 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gaigher, A., Burri, R., San-Jose, L. M., Roulin, A. & Fumagalli, L. Lack of statistical power as a major limitation in understanding MHC-mediated immunocompetence in wild vertebrate populations. Mol. Ecol. 28, 5115–5132 (2019).

PubMed 

Google Scholar
 

R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

Posit PBC. RStudio: integrated development environment for R. GitHub https://github.com/rstudio/rstudio (2012).

Wickham, H. ggplot2. WIREs Comput. Stat. 3, 180–185 (2011).


Google Scholar
 

Lüdecke, M. D. sjPlot: data visualization for statistics in social science. CRAN https://cran.r-project.org/package=sjPlot (2023).

Bartón, K. MuMIn: model selection and model averaging based on information criteria. CRAN https://cran.r-project.org/package=MuMIn (2018).

Müller-Klein, N. et al. Twenty-years of tuberculosis-driven selection shaped the evolution of meerkat MHC. Datasets and code. figshare https://doi.org/10.6084/m9.figshare.26172985 (2025).

Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).


Google Scholar
 

Griffith, D. M., Veech, J. A. & Marsh, C. J. cooccur: probabilistic species co-occurrence analysis in R. J. Stat. Soft. 69, 1–17 (2016).


Google Scholar
 

Therneau, T. M. coxme: mixed effects Cox models. R Package v.2. CRAN https://cran.r-project.org/package=coxme (2015).