Cahill, D. G. Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119–5122 (2004). This work presents an introduction to and a description of the now-standardized TDTR experimental layout and data analysis, including out-of-phase signals.
Cahill, D. G., Goodson, K. & Majumdar, A. Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J. Heat. Transf. 124, 223–241 (2002).
Rosei, R. & Lynch, D. W. Thermomodulation spectra of Al, Au, and Cu. Phys. Rev. B 5, 3883–3894 (1972).
Rosei, R. Temperature modulation of the optical transitions involving the Fermi surface in Ag: theory. Phys. Rev. B 10, 474–483 (1974).
Weaver, J. H., Lynch, D. W., Culp, C. H. & Rosei, R. Thermoreflectance of V, Nb, and paramagnetic Cr. Phys. Rev. B 14, 459–463 (1976).
Colavita, E., Franciosi, A., Mariani, C. & Rosei, R. Thermoreflectance test of W, Mo and paramagnetic Cr band structures. Phys. Rev. B 27, 4684–4693 (1983).
Braun, J. L. & Hopkins, P. E. Upper limit to the thermal penetration depth during modulated heating of multilayer thin films with pulsed and continuous wave lasers: a numerical study. J. Appl. Phys. 121, 175107 (2017).
Chen, G. Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Oxford Univ. Press, 2005).
Zhang, Z. Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
Kaviany, M. Heat Transfer Physics (Cambridge Univ. Press, 2008).
Srivastava, G. P. The Physics of Phonons (Taylor and Francis, 1990).
Swartz, E. T. & Pohl, R. O. Thermal boundary resistance. Rev. Mod. Phys. 61, 605–668 (1989).
Hopkins, P. E. Thermal transport across solid interfaces with nanoscale imperfections: effects of roughness, disorder, dislocations, and bonding on thermal boundary conductance. ISRN Mech. Eng. 2013, 1–19 (2013).
Monachon, C., Weber, L. & Dames, C. Thermal boundary conductance: a materials science perspective. Annu. Rev. Mater. Res. 46, 433 (2016).
López-Honorato, E. et al. Thermal conductivity mapping of pyrolytic carbon and silicon carbide coatings on simulated fuel particles by time-domain thermoreflectance. J. Nucl. Mater. 378, 35–39 (2008).
Zhao, J.-C., Zheng, X. & Cahill, D. G. High-throughput diffusion multiples. Mater. Today 8, 28–37 (2005). This work demonstrates using TDTR to spatially map the thermal conductivity of materials.
Olson, D. H. et al. Anisotropic thermal conductivity tensor of β-Y2Si2O7 for orientational control of heat flow on micrometer scales. Acta Mater. 189, 299–305 (2020).
Olson, D. H. et al. Evolution of microstructure and thermal conductivity of multifunctional environmental barrier coating systems. Mater. Today Phys. 17, 100304 (2021).
Olson, D. H. et al. Local thermal conductivity measurements to determine the fraction of α-cristobalite in thermally grown oxides for aerospace applications. Scr. Mater. 177, 214–217 (2020).
Milich, M. et al. Quantifying devitrification and porosity in thermally grown oxides through spatially-resolved time-domain thermoreflectance. Acta Mater. 288, 120802 (2025).
Ardrey, K. D. et al. Opportunities for novel refractory alloy thermal/environmental barrier coatings using multicomponent rare earth oxides. Scr. Mater. 251, 116206 (2024).
Koh, Y. K., Bae, M.-H., Cahill, D. G. & Pop, E. Heat conduction across monolayer and few-layer graphenes. Nano Lett. 10, 4363–4368 (2010).
Liu, H. et al. Spontaneous chemical functionalization via coordination of Au single atoms on monolayer MoS2. Sci. Adv. 6, eabc9308 (2020).
Zhang, F. et al. Monolayer vanadium-doped tungsten disulfide: a room-temperature dilute magnetic semiconductor. Adv. Sci. 7, 2001174 (2020).
Evans, A. M. et al. Thermally conductive ultra-low-k dielectric layers based on two-dimensional covalent organic frameworks. Nat. Mater. 20, 1142–1148 (2021).
Cancellieri, C. et al. Interface and layer periodicity effects on the thermal conductivity of copper-based nanomultilayers with tungsten, tantalum, and tantalum nitride diffusion barriers. J. Appl. Phys. 128, 195302 (2020).
Cheaito, R. et al. Interplay between total thickness and period thickness in the phonon thermal conductivity of superlattices from the nanoscale to the microscale: coherent versus incoherent phonon transport. Phys. Rev. B 97, 085306 (2018).
Lorenzin, G. et al. Tensile and compressive stresses in Cu/W multilayers: correlation with microstructure, thermal stability, and thermal conductivity. Acta Mater. 240, 118315 (2022).
Ravichandran, J. et al. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nat. Mater. 13, 168–172 (2014). This work discusses the implications of coherent phonon transport on the thermal conductivity of superlattices determined with TDTR.
Chen, P. et al. Role of surface-segregation-driven intermixing on the thermal transport through planar Si/Ge superlattices. Phys. Rev. Lett. 111, 115901 (2013).
Koh, Y. K., Cao, Y., Cahill, D. G. & Jena, D. Heat-transport mechanisms in superlattices. Adv. Funct. Mater. 19, 610–615 (2009).
Rawat, V., Koh, Y. K., Cahill, D. G. & Sands, T. D. Thermal conductivity of (Zr,W)N/ScN metal/semiconductor multilayers and superlattices. J. Appl. Phys. 105, 024909 (2009).
Babaei, H. et al. Observation of reduced thermal conductivity in a metal–organic framework due to the presence of adsorbates. Nat. Commun. 11, 4010 (2020).
Erickson, K. J. et al. Thin film thermoelectric metal–organic framework with high Seebeck coefficient and low thermal conductivity. Adv. Mat. 27, 3453–3459 (2015).
DeCoster, M. E. et al. Hybridization from guest–host interactions reduces the thermal conductivity of metal–organic frameworks. J. Am. Chem. Soc. 144, 3603–3613 (2022).
Meirzadeh, E. et al. A few-layer covalent network of fullerenes. Nature 613, 71–76 (2023).
Hoque, M. S. B. et al. Ruddlesden–Popper chalcogenides push the limit of mechanical stiffness and glass-like thermal conductivity in crystals. Nat. Commun. 16, 6104 (2025).
Zhao, B. et al. Orientation-controlled anisotropy in single crystals of quasi-1D BaTiS3. Chem. Mater. 34, 5680–5689 (2022).
Dames, C. Ultrahigh thermal conductivity confirmed in boron arsenide. Science 361, 549–550 (2018).
Kang, J. S., Li, M., Wu, H., Nguyen, H. & Hu, Y. Experimental observation of high thermal conductivity in boron arsenide. Science 361, 575–578 (2018).
Tian, F. et al. Unusual high thermal conductivity in boron arsenide bulk crystals. Science 361, 582–585 (2018).
Wang, X., Ho, V., Segalman, R. A. & Cahill, D. G. Thermal conductivity of high-modulus polymer fibers. Macromolecules 46, 4937–4943 (2013).
Cahill, D. G. Extremes of heat conduction—pushing the boundaries of the thermal conductivity of materials. MRS Bull. 37, 855–863 (2012).
Cahill, D. G. Thermal-conductivity measurement by time-domain thermoreflectance. MRS Bull. 43, 782–789 (2018).
Schmidt, A., Chiesa, M., Chen, X. & Chen, G. An optical pump–probe technique for measuring the thermal conductivity of liquids. Rev. Sci. Instrum. 79, 64902 (2008).
Foley, B. M. et al. Voltage-controlled bistable thermal conductivity in suspended ferroelectric thin-film membranes. ACS Appl. Mater. Interfaces 10, 25493–25501 (2018).
Ihlefeld, J. F. et al. Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films. Nano Lett. 15, 1791–1795 (2015). This work uses TDTR to measure the thermal conductivity of a ferroelectric thin film while an electric field is applied to modulate the thermal conductivity via ferroelastic domain wall switching.
Foley, B. M. et al. Modifying surface energy of graphene via plasma-based chemical functionalization to tune thermal and electrical transport at metal interfaces. Nano Lett. 15, 4876–4882 (2015).
Hopkins, P. E. et al. Measuring the thermal conductivity of porous, transparent SiO2 films with time domain thermoreflectance. J. Heat. Transf. 133, 61601 (2011).
Hopkins, P. E., Kaehr, B., Piekos, E. S., Dunphy, D. & Brinker, C. J. Minimum thermal conductivity considerations in aerogel thin films. J. Appl. Phys. 111, 113532 (2012).
Rosul, M. G. et al. Thermionic transport across gold-graphene-WSe2 van der Waals heterostructures. Sci. Adv. 5, eaax7827 (2019).
Koh, Y. K. et al. Role of remote interfacial phonon (RIP) scattering in heat transport across graphene/SiO2 interfaces. Nano Lett. 16, 6014–6020 (2016).
Cho, J. et al. Electrochemically tunable thermal conductivity of lithium cobalt oxide. Nat. Commun. 5, 4035 (2014). This work uses TDTR to measure the thermal conductivity of a cathode material while an electric field is applied to modulate the thermal conductivity via lithiation.
Eesley, G. L. Observation of nonequilibrium electron heating in copper. Phys. Rev. Lett. 51, 2140–2143 (1983). To our knowledge, this work presents the first demonstration of using pulsed lasers (~12 ps pulse width) in a transient thermoreflectance configuration to measure thermal properties of a material.
Eesley, G. L. Generation of nonequlibrium electron and lattice temperatures in copper by picosecond laser pulses. Phys. Rev. B 33, 2144–2151 (1986).
Paddock, C. A. & Eesley, G. L. Transient thermoreflectance from thin metal films. J. Appl. Phys. 60, 285–290 (1986).
Opsal, J., Rosencwaig, A. & Willenborg, D. L. Thermal-wave detection and thin-film thickness measurements with laser beam deflection. Appl. Opt. 22, 3169–3176 (1983).
Opsal, J. & Rosencwaig, A. Thermal and plasma wave depth profiling in silicon. Appl. Phys. Lett. 47, 498–500 (1985).
Thomsen, C. et al. Coherent phonon generation and detection by picosecond light pulses. Phys. Rev. Lett. 53, 989–992 (1984).
Stoner, R. J. & Maris, H. J. Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K. Phys. Rev. B 48, 16373–16387 (1993).
Bonello, B., Perrin, B. & Rossignol, C. Photothermal properties of bulk and layered materials by the picosecond acoustics technique. J. Appl. Phys. 83, 3081–3088 (1998).
Capinski, W. S. & Maris, H. J. Improved apparatus for picosecond pump-and-probe optical measurements. Rev. Sci. Instrum. 67, 2720–2726 (1996).
Capinski, W. S. & Maris, H. J. Thermal conductivity of GaAs/AlAs superlattices. Phys. B 219–220, 699–701 (1996).
Capinski, W. S. et al. Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique. Phys. Rev. B 59, 8105–8113 (1999).
Huxtable, S., Cahill, D. G., Fauconnier, V., White, J. O. & Zhao, J. C. Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials. Nat. Mater. 3, 298–301 (2004).
Cahill, D. G. et al. Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2003).
Costescu, R. M., Wall, M. A. & Cahill, D. G. Thermal conductance of epitaxial interfaces. Phys. Rev. B 67, 054302 (2003). This work demonstrates using TDTR to measure the thermal interface conductance.
Koh, Y. K. et al. Comparison of the 3ω method and time-domain thermoreflectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors. J. Appl. Phys. 105, 54303 (2009).
Jiang, P., Qian, X. & Yang, R. Tutorial: time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials. J. Appl. Phys. 28, 161103 (2018). This paper presents an extensive tutorial on TDTR.
Feser, J. P. & Cahill, D. G. Probing anisotropic heat transport using time-domain thermoreflectance with offset laser spots. Rev. Sci. Instrum. 83, 104901 (2012). This work uses a configuration of TDTR with offset pump and probe to measure both in-plane and out-of-plane thermal conductivity of materials.
Feser, J. P., Liu, J. & Cahill, D. G. Pump–probe measurements of the thermal conductivity tensor for materials lacking in-plane symmetry. Rev. Sci. Instrum. 85, 104903 (2014).
Kimling, J., Philippi-Kobs, A., Jacobsohn, J., Oepen, H. P. & Cahill, D. G. Thermal conductance of interfaces with amorphous SiO2 measured by time-resolved magneto-optic Kerr-effect thermometry. Phys. Rev. B 95, 184305 (2017).
Angeles, F. et al. Picosecond magneto-optic thermometry measurements of nanoscale thermal transport in AlN thin films. APL Mater. 11, 061127 (2023). This study presents an example of using TR-MOKE to interrogate the cross-plane thermal conductivity of high-k thin films.
Peng, W. & Wilson, R. B. Thermal model for time-domain thermoreflectance experiments in a laser-flash geometry. J. Appl. Phys. 131, 134301 (2022). This work discusses the laser-flash TDTR experiment and analyses.
Peng, W. & Wilson, R. B. Nanoscale laser flash measurements of diffuson transport in amorphous Ge and Si. APL Mater. 10, 041111 (2022).
Losego, M. D., Grady, M. E., Sottos, N. R., Cahill, D. G. & Braun, P. V. Effects of chemical bonding on heat transport across interfaces. Nat. Mater. 11, 502–506 (2012).
Zheng, X., Cahill, D. G. & Zhao, J.-C. Effect of MeV ion irradiation on the coefficient of thermal expansion of Fe–Ni invar alloys: a combinatorial study. Acta Mater. 58, 1236–1241 (2010).
Zheng, X., Cahill, D. G., Weaver, R. & Zhao, J.-C. Micron-scale measurements of the coefficient of thermal expansion by time-domain probe beam deflection. J. Appl. Phys. 104, 73509 (2008). This work presents as explanation of probe-beam deflection effects in TDTR experiments.
Tomko, J. A. et al. Nanoscale wetting and energy transmission at solid/liquid interfaces. Langmuir 35, 2106–2114 (2019).
Sun, J. et al. Probe beam deflection technique with liquid immersion for fast mapping of thermal conductance. Appl. Phys. Lett. 124, 42201 (2024).
Sun, J., Lv, G. & Cahill, D. G. Frequency-domain probe beam deflection method for measurement of thermal conductivity of materials on micron length scale. Rev. Sci. Instrum. 94, 14903 (2023).
Schmidt, A. J. Optical Characterization of Thermal Transport from the Nanoscale to the Macroscale (Massachusetts Institute of Technology, 2008).
Gomez, M. J., Liu, K., Lee, J. G. & Wilson, R. B. High sensitivity pump-probe measurements of magnetic, thermal, and acoustic phenomena with a spectrally tunable oscillator. Rev. Sci. Instrum. 91, 023905 (2020).
Liu, J., Choi, G.-M. & Cahill, D. G. Measurement of the anisotropic thermal conductivity of molybdenum disulfide by the time-resolved magneto-optic Kerr effect. J. Appl. Phys. 116, 233107 (2014).
Jang, H. et al. Thermal conductivity of oxide tunnel barriers in magnetic tunnel junctions measured by ultrafast thermoreflectance and magneto-optic Kerr effect thermometry. Phys. Rev. Appl. 13, 024007 (2020).
Wilson, R. B., Apgar, B. A., Martin, L. W. & Cahill, D. G. Thermoreflectance of metal transducers for optical pump–probe studies of thermal properties. Opt. Express 20, 28829–28838 (2012).
Hohensee, G. T., Hsieh, W. P., Losego, M. D. & Cahill, D. G. Interpreting picosecond acoustics in the case of low interface stiffness. Rev. Sci. Instrum. 83, 114902 (2012).
Wilson, R. B., Feser, J. P., Hohensee, G. T. & Cahill, D. G. Two-channel model for nonequilibrium thermal transport in pump–probe experiments. Phys. Rev. B 88, 144305 (2013).
Yang, J., Ziade, E. & Schmidt, A. J. Modeling optical absorption for thermoreflectance measurements. J. Appl. Phys. 119, 095107 (2016).
Hopkins, P. E. et al. Criteria for cross-plane dominated thermal transport in multilayer thin film systems during modulated laser heating. J. Heat. Transf. 132, 081302 (2010).
Schmidt, A. J., Chen, X. & Chen, G. Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump–probe transient thermoreflectance. Rev. Sci. Instrum. 79, 114902 (2008).
Wang, Y., Park, J. Y., Koh, Y. K. & Cahill, D. G. Thermoreflectance of metal transducers for time-domain thermoreflectance. J. Appl. Phys. 108, 43507 (2010).
Rosei, R., Colavita, E., Franciosi, A., Weaver, J. H. & Peterson, D. T. Electronic structure of the bcc transition metals: thermoreflectance studies of bulk V, Nb, Ta, and αTaHx. Phys. Rev. B 21, 3152–3157 (1980).
Islam, M. R. et al. Evaluating size effects on the thermal conductivity and electron-phonon scattering rates of copper thin films for experimental validation of Matthiessen’s rule. Nat. Commun. 15, 9167 (2024).
Yang, J., Ziade, E. & Schmidt, A. J. Uncertainty analysis of thermoreflectance measurements. Rev. Sci. Instrum. 87, 014901 (2016).
Khan, S., Shi, X., Feser, J. & Wilson, R. Thermal conductance of interfaces between titanium nitride and group IV semiconductors at high temperatures. Appl. Phys. Lett. 125, 041601 (2024).
Khan, S. et al. Properties for thermally conductive interfaces with wide band gap materials. ACS Appl. Mater. Interfaces 14, 36178–36188 (2022).
Jiang, P., Huang, B. & Koh, Y. K. Accurate measurements of cross-plane thermal conductivity of thin films by dual-frequency time-domain thermoreflectance (TDTR). Rev. Sci. Instrum. 87, 075101 (2016).
Kan, Y. K. Heat Transport by Phonons in Crystalline Materials and Nanostructures (Univ. of Illinois at Urbana-Champaign, 2010).
Cheng, Z. et al. Thermal visualization of buried interfaces enabled by ratio signal and steady-state heating of time-domain thermoreflectance. ACS Appl. Mater. Interfaces 13, 31843–31851 (2021).
Szwejkowski, C. J. et al. Size effects in the thermal conductivity of gallium oxide (β-Ga2O3) films grown via open-atmosphere annealing of gallium nitride. J. Appl. Phys. 117, 084308 (2015).
Aryana, K. et al. Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices. Nat. Commun. 12, 774 (2021).
Lee, S.-M. & Cahill, D. G. Heat transport in thin dielectric films. J. Appl. Phys. 81, 2590–2595 (1997).
Jiang, P., Qian, X., Yang, R. & Lindsay, L. Anisotropic thermal transport in bulk hexagonal boron nitride. Phys. Rev. Mater. 2, 064005 (2018).
Jiang, P., Qian, X. & Yang, R. Time-domain thermoreflectance (TDTR) measurements of anisotropic thermal conductivity using a variable spot size approach. Rev. Sci. Instrum. 88, 074901 (2017).
Rai, A., Sangwan, V. K., Gish, J. T., Hersam, M. C. & Cahill, D. G. Anisotropic thermal conductivity of layered indium selenide. Appl. Phys. Lett. 118, 073101 (2021).
Jiang, P., Qian, X. & Yang, R. A new elliptical-beam method based on time-domain thermoreflectance (TDTR) to measure the in-plane anisotropic thermal conductivity and its comparison with the beam-offset method. Rev. Sci. Instrum. 89, 094902 (2018).
Zhu, J. et al. Revealing the origins of 3D anisotropic thermal conductivities of black phosphorus. Adv. Electron. Mater. 2, 1600040 (2016).
Jang, H., Wood, J. D., Ryder, C. R., Hersam, M. C. & Cahill, D. G. Anisotropic thermal conductivity of exfoliated black phosphorus. Adv. Mater. 27, 8017–8022 (2015).
Braun, J. L., Olson, D. H., Gaskins, J. T. & Hopkins, P. E. A steady-state thermoreflectance method to measure thermal conductivity. Rev. Sci. Instrum. 90, 24905 (2019). This work reviews SSTR.
Oh, D.-W., Ko, C., Ramanathan, S. & Cahill, D. G. Thermal conductivity and dynamic heat capacity across the metal-insulator transition in thin film VO2. Appl. Phys. Lett. 96, 151906 (2010).
Olson, D. H., Braun, J. L. & Hopkins, P. E. Spatially resolved thermoreflectance techniques for thermal conductivity measurements from the nanoscale to the mesoscale. J. Appl. Phys. 126, 150901 (2019).
Wang, X., Liman, C. D., Treat, N. D., Chabinyc, M. L. & Cahill, D. G. Ultralow thermal conductivity of fullerene derivatives. Phys. Rev. B 88, 075310 (2013).
Liu, J. et al. Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method. Rev. Sci. Instrum. 84, 034902 (2013). This study develops multi-frequency TDTR to measure both thermal conductivity and heat capacity.
Wei, C., Zheng, X., Cahill, D. G. & Zhao, J. C. Invited article: micron resolution spatially resolved measurement of heat capacity using dual-frequency time-domain thermoreflectance. Rev. Sci. Instrum. 84, 071301 (2013).
Wilson, R. B. et al. Electric current induced ultrafast demagnetization. Phys. Rev. B 96, 045105 (2017).
Qian, X., Zhou, J. & Chen, G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 20, 1188–1202 (2021).
Cheng, Z., Graham, S., Amano, H. & Cahill, D. G. Perspective on thermal conductance across heterogeneously integrated interfaces for wide and ultrawide bandgap electronics. Appl. Phys. Lett. 120, 030501 (2022).
Zhang, Z. et al. Observation of thermal spin-transfer torque via ferromagnetic resonance in magnetic tunnel junctions. Phys. Rev. B 94, 064414 (2016).
Choi, G.-M., Wilson, R. B. & Cahill, D. G. Indirect heating of Pt by short-pulse laser irradiation of Au in a nanoscale Pt/Au bilayer. Phys. Rev. B 89, 064307 (2014).
Angeles, F., Shi, X. & Wilson, R. B. In situ and ex situ processes for synthesizing metal multilayers with electronically conductive interfaces. J. Appl. Phys. 131, 225302 (2022).
Choi, G.-M., Moon, C.-H., Min, B.-C., Lee, K.-J. & Cahill, D. G. Thermal spin-transfer torque driven by the spin-dependent Seebeck effect in metallic spin-valves. Nat. Phys. 11, 576–581 (2015).
Koh, Y. R. et al. Thermal boundary conductance across epitaxial metal/sapphire interfaces. Phys. Rev. B 102, 205304 (2020).
Kang, J. S. et al. Integration of boron arsenide cooling substrates into gallium nitride devices. Nat. Electron. 4, 416–423 (2021).
Cheng, Z. et al. High thermal conductivity in wafer-scale cubic silicon carbide crystals. Nat. Commun. 13, 7201 (2022).
Mu, F. et al. High thermal boundary conductance across bonded heterogeneous GaN–SiC interfaces. ACS Appl. Mater. Interfaces 11, 33428–33434 (2019).
Cheng, Z., Mu, F., Yates, L., Suga, T. & Graham, S. Interfacial thermal conductance across room-temperature-bonded GaN/diamond interfaces for GaN-on-diamond devices. ACS Appl. Mater. Interfaces 12, 8376–8384 (2020).
Cheng, Z. et al. Tunable thermal energy transport across diamond membranes and diamond–Si interfaces by nanoscale graphoepitaxy. ACS Appl. Mater. Interfaces 11, 18517–18527 (2019).
Cahill, D. G. et al. Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1, 011305 (2014).
Giri, A. & Hopkins, P. E. A review of experimental and computational advances in thermal boundary conductance and nanoscale thermal transport across solid interfaces. Adv. Funct. Mater. 30, 1903857 (2020).
Chen, J., Xu, X., Zhou, J. & Li, B. Interfacial thermal resistance: past, present, and future. Rev. Mod. Phys. 94, 025002 (2022).
Wilson, R. B. & Cahill, D. G. Experimental validation of the interfacial form of the Wiedemann–Franz law. Phys. Rev. Lett. 108, 255901 (2012).
Cheng, Z. et al. Thermal conductance across harmonic-matched epitaxial Al–sapphire heterointerfaces. Commun. Phys. 3, 115 (2020).
Gaskins, J. T. et al. Thermal boundary conductance across heteroepitaxial ZnO/GaN interfaces: assessment of the phonon gas model. Nano. Lett. 18, 7469–7477 (2018).
Norris, P. M. & Hopkins, P. E. Examining interfacial diffuse phonon scattering through transient thermoreflectance measurements of thermal boundary conductance. J. Heat. Transf. 131, 043207 (2009).
Wilson, R. B., Apgar, B. A., Hsieh, W.-P., Martin, L. W. & Cahill, D. G. Thermal conductance of strongly bonded metal–oxide interfaces. Phys. Rev. B 91, 115414 (2015).
Angeles, F. et al. Interfacial thermal transport in spin caloritronic material systems. Phys. Rev. Mater. 5, 114403 (2021).
Hopkins, P. E. et al. Manipulating thermal conductance at metal–graphene contacts via chemical functionalization. Nano. Lett. 12, 590–595 (2012).
Vaziri, S. et al. Ultrahigh thermal isolation across heterogeneously layered two-dimensional materials. Sci. Adv. 5, eaax1325 (2019).
Lyeo, H.-K. & Cahill, D. G. Thermal conductance of interfaces between highly dissimilar materials. Phys. Rev. B 73, 144301 (2006).
Hohensee, G. T., Fellinger, M. R., Trinkle, D. R. & Cahill, D. G. Thermal transport across high-pressure semiconductor-metal transition in Si and Si0.991Ge0.009. Phys. Rev. B 91, 205104 (2015).
Dalton, D. A., Hsieh, W.-P., Hohensee, G. T., Cahill, D. G. & Goncharov, A. F. Effect of mass disorder on the lattice thermal conductivity of MgO periclase under pressure. Sci. Rep. 3, 2400 (2013).
Hsieh, W.-P. et al. Testing the minimum thermal conductivity model for amorphous polymers using high pressure. Phys. Rev. B 83, 174205 (2011).
Hohensee, G. T., Wilson, R. B. & Cahill, D. G. Thermal conductance of metal–diamond interfaces at high pressure. Nat. Commun. 6, 6578 (2015).
Hsieh, W.-P., Lyons, A. S., Pop, E., Keblinski, P. & Cahill, D. G. Pressure tuning of the thermal conductance of weak interfaces. Phys. Rev. B 84, 184107 (2011).
Hsieh, W.-P., Chen, B., Li, J., Keblinski, P. & Cahill, D. G. Pressure tuning of the thermal conductivity of the layered muscovite crystal. Phys. Rev. B 80, 180302 (2009).
Sääskilahti, K., Oksanen, J., Tulkki, J. & Volz, S. Role of anharmonic phonon scattering in the spectrally decomposed thermal conductance at planar interfaces. Phys. Rev. B 90, 134312 (2014).
Lu, Z., Chaka, A. M. & Sushko, P. V. Thermal conductance enhanced via inelastic phonon transport by atomic vacancies at Cu/Si interfaces. Phys. Rev. B 102, 075449 (2020).
Stevens, R. J., Zhigilei, L. V. & Norris, P. M. Effects of temperature and disorder on thermal boundary conductance at solid–solid interfaces: nonequilibrium molecular dynamics simulations. Int. J. Heat. Mass. Transf. 50, 3977–3989 (2007).
Dai, J. & Tian, Z. Rigorous formalism of anharmonic atomistic Green’s function for three-dimensional interfaces. Phys. Rev. B 101, 041301 (2020).
Guo, Y. et al. Anharmonic phonon–phonon scattering at the interface between two solids by nonequilibrium Green’s function formalism. Phys. Rev. B 103, 174306 (2021).
Sadasivam, S. et al. Thermal transport across metal silicide-silicon interfaces: first-principles calculations and Green’s function transport simulations. Phys. Rev. B 95, 085310 (2017).
Majumdar, A. & Reddy, P. Role of electron–phonon coupling in thermal conductance of metal–nonmetal interfaces. Appl. Phys. Lett. 84, 4768–4770 (2004).
Sergeev, A. V. Electronic Kapitza conductance due to inelastic electron-boundary scattering. Phys. Rev. B 58, R10199–R10202 (1998).
Sergeev, A. Inelastic electron–boundary scattering in thin films. Phys. B Condens. Matter 263–264, 217–219 (1999).
Mahan, G. D. Kapitza thermal resistance between a metal and a nonmetal. Phys. Rev. B 79, 075408 (2009).
Hopkins, P. E., Kassebaum, J. L. & Norris, P. M. Effects of electron scattering at metal–nonmetal interfaces on electron–phonon equilibration in gold films. J. Appl. Phys. 105, 023710 (2009).
Wang, Y., Ruan, X. & Roy, A. K. Two-temperature nonequilibrium molecular dynamics simulation of thermal transport across metal–nonmetal interfaces. Phys. Rev. B 85, 205311 (2012).
P. Rudolph, ed. Handbook of Crystal Growth, Bulk Crystal Growth Vol. II (Elsevier, 2015).
Li, S. et al. High thermal conductivity in cubic boron arsenide crystals. Science 361, 579–581 (2018).
Hou, S. et al. Strong temperature dependence of thermal conductivity in high-purity cubic boron arsenide. Phys. Rev. B 111, 23520 (2025).
Hou, S. et al. Thermal conductivity of BAs under pressure. Adv. Electron. Mater. 8, 2200017 (2022).
Chen, K. et al. Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride. Science 367, 555–559 (2020).
Kang, J. S., Wu, H. & Hu, Y. Thermal properties and phonon spectral characterization of synthetic boron phosphide for high thermal conductivity applications. Nano Lett. 17, 7507–7514 (2017).
Zheng, Q. et al. High thermal conductivity in isotopically enriched cubic boron phosphide. Adv. Funct. Mater. 28, 1805116 (2018).
Lv, B. et al. Experimental study of the proposed super-thermal-conductor: BAs. Appl. Phys. Lett. 106, 074105 (2015).
Feng, T., Lindsay, L. & Ruan, X. Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids. Phys. Rev. B 96, 161201 (2017).
Lindsay, L., Broido, D. A. & Reinecke, T. L. First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond? Phys. Rev. Lett. 111, 025901 (2013).
Broido, D. A., Lindsay, L. & Reinecke, T. L. Ab initio study of the unusual thermal transport properties of boron arsenide and related materials. Phys. Rev. B 88, 214303 (2013).
Ravichandran, N. K. & Broido, D. Non-monotonic pressure dependence of the thermal conductivity of boron arsenide. Nat. Commun. 10, 827 (2019).
Mion, C., Muth, J. F., Preble, E. A. & Hanser, D. Thermal conductivity, dislocation density and GaN device design. Superlatt. Microstruct. 40, 338–342 (2006).
Zou, J., Kotchetkov, D., Balandin, A. A., Florescu, D. I. & Pollak, F. H. Thermal conductivity of GaN films: effects of impurities and dislocations. J. Appl. Phys. 92, 2534–2539 (2002).
Beechem, T. E. et al. Size dictated thermal conductivity of GaN. J. Appl. Phys. 120, 095104 (2016).
Koh, Y. R. et al. Bulk-like intrinsic phonon thermal conductivity of micrometer-thick AlN films. ACS Appl. Mater. Interfaces 12, 29443–29450 (2020).
Sood, A. et al. Anisotropic and inhomogeneous thermal conduction in suspended thin-film polycrystalline diamond. J. Appl. Phys. 119, 175103 (2016).
Jiang, P., Lindsay, L., Huang, X. & Koh, Y. K. Interfacial phonon scattering and transmission loss in >1 μm thick silicon-on-insulator thin films. Phys. Rev. B 97, 195308 (2018).
Sun, B. et al. Dislocation-induced thermal transport anisotropy in single-crystal group-III nitride films. Nat. Mater. 18, 136–140 (2019).
Cahill, D. G., Watson, S. K. & Pohl, R. O. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131–6140 (1992).
Duda, J. C., Hopkins, P. E., Shen, Y. & Gupta, M. C. Thermal transport in organic semiconducting polymers. Appl. Phys. Lett. 102, 251912 (2013).
Giri, A. et al. Molecular tail chemistry controls thermal transport in fullerene films. Phys. Rev. Mater. 4, 65404 (2020).
Chiritescu, C. et al. Ultralow thermal conductivity in disordered, layered WSe2 crystals. Science 315, 351–353 (2007). This work presents an experimental realization of the lowest thermal conductivity fully dense solid at room temperature with TDTR.
Hadland, E. C. et al. Ultralow thermal conductivity of turbostratically disordered MoSe2 ultra-thin films and implications for heterostructures. Nanotechnology 30, 285401 (2019).
Kim, S. E. et al. Extremely anisotropic van der Waals thermal conductors. Nature 597, 660–665 (2021).
Li, D., Schleife, A., Cahill, D. G., Mitchson, G. & Johnson, D. C. Ultralow shear modulus of incommensurate [SnSe]n[MoSe2]n layers synthesized by the method of modulated elemental reactants. Phys. Rev. Mater. 3, 043607 (2019).
Hadland, E. et al. Synthesis, characterization, and ultralow thermal conductivity of a lattice-mismatched SnSe2(MoSe2)1.32 heterostructure. Chem. Mater. 31, 5699–5705 (2019).
Gunning, N. S., Feser, J., Beekman, M., Cahill, D. G. & Johnson, D. C. Synthesis and thermal properties of solid-state structural isomers: ordered intergrowths of SnSe and MoSe2. J. Am. Chem. Soc. 137, 8803–8809 (2015).
Dai, H. & Wang, R. Methods for measuring thermal conductivity of two-dimensional materials: a review. Nanomaterials 12, 589 (2022).
Dong, Y., Wu, Z.-S., Ren, W., Cheng, H.-M. & Bao, X. Graphene: a promising 2D material for electrochemical energy storage. Sci. Bull. 62, 724–740 (2017).
Munteanu, R.-E., Moreno, P. S., Bramini, M. & Gáspár, S. 2D materials in electrochemical sensors for in vitro or in vivo use. Anal. Bioanal. Chem. 413, 701–725 (2021).
Wang, X. et al. Recent advances in the functional 2D photonic and optoelectronic devices. Adv. Opt. Mater. 7, 1801274 (2019).
Jiang, P., Qian, X., Gu, X. & Yang, R. Probing anisotropic thermal conductivity of transition metal dichalcogenides MX2 (M = Mo, W and X = S, Se) using time-domain thermoreflectance. Adv. Mater. 29, 1701068 (2017).
Xu, K. et al. In-plane thermal diffusivity determination using beam-offset frequency-domain thermoreflectance with a one-dimensional optical heat source. Int. J. Heat. Mass. Transf. 214, 124376 (2023).
Gu, X. & Yang, R. Phonon transport in single-layer transition metal dichalcogenides: a first-principles study. Appl. Phys. Lett. 105, 131903 (2014).
Zhu, G. et al. Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation. Nat. Commun. 7, 13211 (2016).
Jiang, P., Qian, X., Li, X. & Yang, R. Three-dimensional anisotropic thermal conductivity tensor of single crystalline β-Ga2O3. Appl. Phys. Lett. 113, 232105 (2018).
Sood, A. et al. Direct visualization of thermal conductivity suppression due to enhanced phonon scattering near individual grain boundaries. Nano. Lett. 18, 3466–3472 (2018).
Grimm, D. et al. Thermal conductivity of mechanically joined semiconducting/metal nanomembrane superlattices. Nano. Lett. 14, 2387–2393 (2014).
Cheng, Z. et al. Probing local thermal conductivity variations in CVD diamond with large grains by time-domain thermoreflectance. In Proc. Int. Heat Transf. Conf. Vol. 16 8694–8701 (Begellhouse, 2018).
Sood, A. et al. An electrochemical thermal transistor. Nat. Commun. 9, 4510 (2018).
Brown, D. B. et al. Spatial mapping of thermal boundary conductance at metal–molybdenum diselenide interfaces. ACS Appl. Mater. Interfaces 11, 14418–14426 (2019).
Cheaito, R. et al. Thermal conductivity measurements on suspended diamond membranes using picosecond and femtosecond time-domain thermoreflectance. In Proc. IEEE Intersoc. Conf. Therm. Thermomech. Phenom. Electron. Syst. (ITherm) 706–710 (IEEE, 2017).
Zheng, X., Cahill, D., Krasnochtchekov, P., Averback, R. & Zhao, J. High-throughput thermal conductivity measurements of nickel solid solutions and the applicability of the Wiedemann–Franz law. Acta. Mater. 55, 5177–5185 (2007).
Zhao, J.-C., Zheng, X. & Cahill, D. G. Thermal conductivity mapping of the Ni–Al system and the β-NiAl phase in the Ni–Al–Cr system. Scr. Mater. 66, 935–938 (2012).
Germain, T., Chowdhury, T. A., Carter, J. & Putnam, S. A. Measuring heat transfer coefficients for microchannel jet impingement using time-domain thermoreflectance. In Proc. IEEE Intersoc. Conf. Therm. Thermomech. Phenom. Electron. Syst. (ITherm) 449–454 (IEEE, 2018).
Mehrvand, M. & Putnam, S. A. Probing the local heat transfer coefficient of |water-cooled microchannels using time-domain thermoreflectance. J. Heat. Transf. 139, 112403 (2017).
Mehrvand, M. & Putnam, S. A. Transient and local two-phase heat transport at macro-scales to nano-scales. Commun. Phys. 1, 21 (2018).
Xie, X., Diao, Z. & Cahill, D. G. Microscale, bendable thermoreflectance sensor for local measurements of the thermal effusivity of biological fluids and tissues. Rev. Sci. Instrum. 91, 044903 (2020).
Tian, Z., Marconnet, A. & Chen, G. Enhancing solid–liquid interface thermal transport using self-assembled monolayers. Appl. Phys. Lett. 106, 211602 (2015).
Ge, Z., Cahill, D. G. & Braun, P. V. Thermal conductance of hydrophilic and hydrophobic interfaces. Phys. Rev. Lett. 96, 186101 (2006). This work measures the thermal boundary conductance across solid–liquid interfaces with TDTR.
Hsieh, W. P. & Deschamps, F. Thermal conductivity of H2O–CH3OH mixtures at high pressures: implications for the dynamics of icy super-Earths outer shells. J. Geophys. Res. Planets 120, 1697–1707 (2015).
Yong Park, J., Gardner, A., King, W. P. & Cahill, D. G. Droplet impingement and vapor layer formation on hot hydrophobic surfaces. J. Heat. Transf. 136, 092902 (2014).
Yong Park, J., Min, C.-K., Granick, S. & Cahill, D. G. Residence time and heat transfer when water droplets hit a scalding surface. J. Heat. Transf. 134, 101503 (2012).
Shin, J. et al. Thermally functional liquid crystal networks by magnetic field driven molecular orientation. ACS Macro. Lett. 5, 955–960 (2016).
Ueji, K. et al. In situ time-domain thermoreflectance measurements using Au as the transducer during electrolyte gating. Appl. Phys. Lett. 117, 133104 (2020).
Zhang, D.-L. et al. High-frequency magnetoacoustic resonance through strain–spin coupling in perpendicular magnetic multilayers. Sci. Adv. 6, eabb4607 (2020).
Chen, B., Hsieh, W. P., Cahill, D. G., Trinkle, D. R. & Li, J. Thermal conductivity of compressed H2O to 22 GPa: a test of the Leibfried–Schlömann equation. Phys. Rev. B 83, 132301 (2011).
Ortiz, V. H. et al. Thermal conductivity of irradiated tetragonal lithium aluminate. J. Nucl. Mater. 606, 155585 (2025).
Cheaito, R., Gorham, C. S., Misra, A., Hattar, K. & Hopkins, P. E. Thermal conductivity measurements via time-domain thermoreflectance for the characterization of radiation induced damage. J. Mater. Res. 30, 1403–1412 (2015).
Alaie, S. et al. Reduction and increase in thermal conductivity of Si irradiated with Ga+ via focused ion beam. ACS Appl. Mater. Interfaces 10, 37679–37684 (2018).
Pfeifer, T. W. et al. Measuring sub-surface spatially varying thermal conductivity of silicon implanted with krypton. J. Appl. Phys. 132, 075112 (2022). This work demonstrates resolving the thermal conductivity as a function of depth of irradiated silicon with TDTR.
Scott, E. A. et al. Orders of magnitude reduction in the thermal conductivity of polycrystalline diamond through carbon, nitrogen, and oxygen ion implantation. Carbon 157, 97–105 (2020).
Scott, E. A. et al. Reductions in the thermal conductivity of irradiated silicon governed by displacement damage. Phys. Rev. B 104, 134306 (2021).
Scott, E. A. et al. Phonon scattering effects from point and extended defects on thermal conductivity studied via ion irradiation of crystals with self-impurities. Phys. Rev. Mater. 2, 095001 (2018).
Scott, E. A. et al. Thermal conductivity enhancement in ion-irradiated hydrogenated amorphous carbon films. Nano Lett. 21, 3935–3940 (2021).
Pfeifer, T. W. et al. Ion irradiation induced crystalline disorder accelerates interfacial phonon conversion and reduces thermal boundary resistance. Phys. Rev. B 109, 165421 (2024).
Gorham, C. S. et al. Ion irradiation of the native oxide/silicon surface increases the thermal boundary conductance across aluminum/silicon interfaces. Phys. Rev. B 90, 024301 (2014).
Hopkins, P. E. et al. Influence of anisotropy on thermal boundary conductance at solid interfaces. Phys. Rev. B 84, 125408 (2011).
Hopkins, P. E. et al. Reduction in thermal boundary conductance due to proton implantation in silicon and sapphire. Appl. Phys. Lett. 98, 231901 (2011).
Zheng, X. & Eng, B. High-throughput Measurements of Thermal Conductivity and the Coefficient of Thermal Expansion (Univ. of Illinois at Urbana-Champaign, 2008).
Rost, C. M. et al. Hafnium nitride films for thermoreflectance transducers at high temperatures: potential based on heating from laser absorption. Appl. Phys. Lett. 111, 151902 (2017).
Wilson, R. B. & Cahill, D. G. Anisotropic failure of Fourier theory in time-domain thermoreflectance experiments. Nat. Commun. 5, 5075 (2014). This work presents a set of comprehensive measurements, analyses and discussion of ‘mean free path spectroscopy’ effects in TDTR measurements.
Minnich, A. J. et al. Thermal conductivity spectroscopy technique to measure phonon mean free paths. Phys. Rev. Lett. 107, 095901 (2011).
Koh, Y. K. & Cahill, D. G. Frequency dependence of the thermal conductivity of semiconductor alloys. Phys. Rev. B 76, 075207 (2007).
Regner, K. T. et al. Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance. Nat. Commun. 4, 1640 (2013).
Wilson, R. B. & Cahill, D. G. Limits to Fourier theory in high thermal conductivity single crystals. Appl. Phys. Lett. 107, 203112 (2015).
Vermeersch, B., Mohammed, A. M. S., Pernot, G., Koh, Y. R. & Shakouri, A. Superdiffusive heat conduction in semiconductor alloys. II. Truncated Lévy formalism for experimental analysis. Phys. Rev. B 91, 085203 (2015).
Vermeersch, B., Carrete, J., Mingo, N. & Shakouri, A. Superdiffusive heat conduction in semiconductor alloys. I. Theoretical foundations. Phys. Rev. B 91, 085202 (2015).
Li, X., Han, J. & Lee, S. Thermal resistance from non-equilibrium phonons at Si–Ge interface. Mater. Today Phys. 34, 101063 (2023).
Han, J. & Lee, S. Thermal resistance across Si–SiGe alloy interface from phonon distribution mismatch. Appl. Phys. Lett. 124, 142201 (2024).
Han, J. & Lee, S. Nonequilibrium thermal resistance of interfaces between III–V compounds. Phys. Rev. Mater. 8, 014604 (2024).
Hua, C., Chen, X., Ravichandran, N. K. & Minnich, A. J. Experimental metrology to obtain thermal phonon transmission coefficients at solid interfaces. Phys. Rev. B 95, 205423 (2017).
Hoque, M. S. B. et al. High in-plane thermal conductivity of aluminum nitride thin films. ACS Nano 15, 9588–9599 (2021).
Tadjer, M. J. et al. Effect of GaN/AlGaN buffer thickness on the electrothermal performance of AlGaN/GaN high electron mobility transistors on engineered substrates. Phys. Status Solidi A 220, 2200828 (2023).
Hoque, M. S. B. et al. Connection length controlled sound speed and thermal conductivity of hybrid metalcone films. Nano Lett. 25, 2594–2599 (2025).
Aller, H. T. et al. Low thermal resistance of diamond–AlGaN interfaces achieved using carbide interlayers. Adv. Mater. Interfaces 12, 2400575 (2025).
Pfeifer, T. W. et al. Limitations and advances in optical thermometry: nanoscale resistances, ultrahigh thermal conductivity, and ultrahigh temperatures. Annu. Rev. Mater. Res. 55, 080423-010435 (2025).
Hopkins, P. E. et al. Effect of dislocation density on thermal boundary conductance across GaSb/GaAs interfaces. Appl. Phys. Lett. 98, 161913 (2011).
Chen, G. Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles. J. Heat. Transf. 118, 539 (1996).
Braun, J. L., Szwejkowski, C. J., Giri, A. & Hopkins, P. E. On the steady-state temperature rise during laser heating of multilayer thin films in optical pump–probe techniques. J. Heat. Transf. 140, 052801 (2018).
Scott, E. A. et al. Probing thermal conductivity of subsurface, amorphous layers in irradiated diamond. J. Appl. Phys. 129, 055307 (2021).
Bin Hoque, Md. S. et al. Thermal conductivity measurements of sub-surface buried substrates by steady-state thermoreflectance. Rev. Sci. Instrum. 92, 64906 (2021).
Salnick, A. & Opsal, J. Dynamics of the plasma and thermal waves in surface-modified semiconductors. Rev. Sci. Instrum. 74, 545–549 (2003).
Schmidt, A. J., Cheaito, R. & Chiesa, M. A frequency-domain thermoreflectance method for the characterization of thermal properties. Rev. Sci. Instrum. 80, 94901 (2009). This work introduces the development of FDTR.
Schmidt, A. J., Cheaito, R. & Chiesa, M. Characterization of thin metals films via frequency-domain thermoreflectance. J. Appl. Phys. 107, 24908 (2010).
Regner, K. T., Majumdar, S. & Malen, J. A. Instrumentation of broadband frequency domain thermoreflectance for measuring thermal conductivity accumulation functions. Rev. Sci. Instrum. 84, 64901 (2013).
Ziade, E. Wide bandwidth frequency-domain thermoreflectance: volumetric heat capacity, anisotropic thermal conductivity, and thickness measurements. Rev. Sci. Instrum. 91, 124901 (2020).
Ziade, E. et al. Thickness dependent thermal conductivity of gallium nitride. Appl. Phys. Lett. 110, 31903 (2017).
Scott, E. A. et al. Thermal conductivity of (Ge2Sb2Te5)1–xCx phase change films. J. Appl. Phys. 128, 155106 (2020).
Kirsch, D. J. et al. An instrumentation guide to measuring thermal conductivity using frequency domain thermoreflectance (FDTR). Rev. Sci. Instrum. 95, 103006 (2024).
Xiang, Z., Pang, Y., Qian, X. & Yang, R. Machine learning reconstruction of depth-dependent thermal conductivity profile from pump–probe thermoreflectance signals. Appl. Phys. Lett. 122, 142201 (2023). This work uses machine learning to analyse TDTR data.
Shen, W., Vaca, D. & Kumar, S. Reconsidering uncertainty from frequency domain thermoreflectance measurement and novel data analysis by deep learning. Nanoscale Microscale Thermophys. Eng. 24, 138–149 (2020).
Hodges, W., Jarzembski, A., McDonald, A., Ziade, E. & Pickrell, G. W. Sensing depths in frequency domain thermoreflectance. J. Appl. Phys. 131, 245103 (2022).
Delmas, W. et al. Thermal transport and mechanical stress mapping of a compression bonded GaN/diamond interface for vertical power devices. ACS Appl. Mater. Interfaces 16, 11003–11012 (2024).
Zandavi, S. H., Schmidt, A. & Brun, X. Assessing thermal resistance in fusion bond layers of 3D heterogeneous electronics packaging. J. Appl. Phys. 136, 155303 (2024).
Poopakdee, N., Abdallah, Z., Pomeroy, J. W. & Kuball, M. In situ thermoreflectance characterization of thermal resistance in multilayer electronics packaging. ACS Appl. Electron. Mater. 4, 1558–1566 (2022).
Wang, L., Cheaito, R., Braun, J. L., Giri, A. & Hopkins, P. E. Thermal conductivity measurements of non-metals via combined time- and frequency-domain thermoreflectance without a metal film transducer. Rev. Sci. Instrum. 87, 094902 (2016). This study extends TDTR to probe thermal properties without a metal film transducer (such as ‘transducerless’ TDTR).
Hutchins, W. et al. Ultrafast evanescent heat transfer across solid interfaces via hyperbolic phonon polaritons in hexagonal boron nitride. Nat. Mater. 24, 698–706 (2025).
Folland, T. G., Nordin, L., Wasserman, D. & Caldwell, J. D. Probing polaritons in the mid- to far-infrared. J. Appl. Phys. 125, 191102 (2019).
Hutchins, W. D., Zare, S., Hirt, D., Golightly, E. & Hopkins, P. E. Infrared phonon thermoreflectance in polar dielectrics. Preprint at https://arxiv.org/abs/2504.05675 (2025).
Majumdar, A. Scanning thermal microscopy. Annu. Rev. Mater. Sci. 29, 505–585 (1999).
Zhang, Y. et al. A review on principles and applications of scanning thermal microscopy (SThM). Adv. Funct. Mater. 30, 1900892 (2020).
Siemens, M. E. et al. Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. Nat. Mater. 9, 26–30 (2010).
Hu, Y., Zeng, L., Minnich, A. J., Dresselhaus, M. S. & Chen, G. Spectral mapping of thermal conductivity through nanoscale ballistic transport. Nat. Nanotechnol. 10, 701–706 (2015).
Kwon, H., Perez, C., Park, W., Asheghi, M. & Goodson, K. E. Thermal characterization of metal–oxide interfaces using time-domain thermoreflectance with nanograting transducers. ACS Appl. Mater. Interfaces 13, 58059–58065 (2021).
Höppener, C. et al. Tip-enhanced Raman scattering. Nat. Rev. Methods Primers 4, 47 (2024).
Caldwell, J. D. et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4, 44–68 (2015).
Eichfeld, D. A., Maniyara, R. A., Robinson, J. A., Foley, B. M. & Ramos-Alvarado, B. A novel approach to measuring local mechanical properties via photothermal excitation of an atomic force microscope probe using an optical pump–probe inspired design. AIP Adv. 13, 105035 (2023).
Zhang, Y., Zhu, Q. & Borca-Tasciuc, T. Thermal conductivity measurements of thin films by non-contact scanning thermal microscopy under ambient conditions. Nanoscale Adv. 3, 692–702 (2021).
Foley, B. M., Gaskins, J. T. & Hopkins, P. E. Fiber-optic based thermal reflectance material property measurement system and related methods. US Patent 10928317 B2 (2021).
Malen, J. A. et al. Optical measurement of thermal conductivity using fiber aligned frequency domain thermoreflectance. J. Heat. Transf. 133, 081601 (2011).
Dennett, C. A., Buller, D. L., Hattar, K. & Short, M. P. Real-time thermomechanical property monitoring during ion beam irradiation using in situ transient grating spectroscopy. Nucl. Instrum. Methods Phys. Res. B 440, 126–138 (2019).
Reza, A. et al. Non-contact, non-destructive mapping of thermal diffusivity and surface acoustic wave speed using transient grating spectroscopy. Rev. Sci. Instrum. 91, 054902 (2020).