Lodahl, P. et al. Chiral quantum optics. Nature 541, 473 (2017).

ADS 
CAS 
PubMed 

Google Scholar
 

Hentschel, M., Schäferling, M., Duan, X., Giessen, H. & Liu, N. Chiral plasmonics. Sci. Adv. 3, e1602735 (2017).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Lininger, A. et al. Chirality in light-matter interaction. Adv. Mater. 35, 2107325 (2023).

CAS 

Google Scholar
 

Riso, R. R., Grazioli, L., Ronca, E., Giovannini, T. & Koch, H. Strong coupling in chiral cavities: nonperturbative framework for enantiomer discrimination. Phys. Rev. X 13, 031002 (2023).

CAS 

Google Scholar
 

Mayer, N. et al. Chiral topological light for detection of robust enantiosensitive observables. Nat. Photonics 18, 1155 (2024).

Jiang, C., Baggioli, M. & Jiang, Q.-D. Engineering flat bands in twisted-bilayer graphene away from the magic angle with chiral optical cavities. Phys. Rev. Lett. 132, 166901 (2024).

ADS 
CAS 
PubMed 

Google Scholar
 

Zhang, C. et al. Quantum plasmonics pushes chiral sensing limit to single molecules: a paradigm for chiral biodetections. Nat. Commun. 15, 2 (2024).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Turner, M. D. et al. Miniature chiral beamsplitter based on gyroid photonic crystals. Nat. Photonics 7, 801 (2013).

ADS 
CAS 

Google Scholar
 

Yang, Y., Correa da Costa, R., Fuchter, M. J. & Campbell, A. J. Circularly polarized light detection by a chiral organic semiconductor transistor. Nat. Photonics 7, 634 (2013).

ADS 
CAS 

Google Scholar
 

Li, W. et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun. 6, 8379 (2015).

ADS 
CAS 
PubMed 

Google Scholar
 

Sayrin, C. et al. Nanophotonic optical isolator controlled by the internal state of cold atoms. Phys. Rev. X 5, 041036 (2015).


Google Scholar
 

Jalas, D. et al. What is-and what is not-an optical isolator. Nat. Photonics 7, 579 (2013).

ADS 
CAS 

Google Scholar
 

Scheucher, M., Hilico, A., Will, E., Volz, J. & Rauschenbeutel, A. Quantum optical circulator controlled by a single chirally coupled atom. Science 354, 1577 (2016).

ADS 
CAS 
PubMed 

Google Scholar
 

Cardano, F. et al. Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons. Nat. Commun. 8, 15516 (2017).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Valencia-Tortora, R. J., Pancotti, N., Fleischhauer, M., Bernien, H. & Marino, J. Rydberg platform for nonergodic chiral quantum dynamics. Phys. Rev. Lett. 132, 223201 (2024).

ADS 
CAS 
PubMed 

Google Scholar
 

Pucher, S., Liedl, C., Jin, S., Rauschenbeutel, A. & Schneeweiss, P. Atomic spin-controlled non-reciprocal Raman amplification of fibre-guided light. Nat. Photonics 16, 380 (2022).

ADS 
CAS 

Google Scholar
 

Antoniadis, N. O. et al. A chiral one-dimensional atom using a quantum dot in an open microcavity. npj Quantum Inf. 8, 27 (2022).

ADS 

Google Scholar
 

Joshi, C., Yang, F. & Mirhosseini, M. Resonance fluorescence of a chiral artificial atom. Phys. Rev. X 13, 021039 (2023).

CAS 

Google Scholar
 

Owens, J. C. et al. Chiral cavity quantum electrodynamics. Nat. Phys. 18, 1048 (2022).

CAS 

Google Scholar
 

Söllner, I. et al. Deterministic photon emitter coupling in chiral photonic circuits. Nat. Nanotechnol. 10, 775 (2015).

ADS 
PubMed 

Google Scholar
 

Coles, R. J. et al. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer. Nat. Commun. 7, 11183 (2016).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hurst, D. L. et al. Nonreciprocal transmission and reflection of a chirally coupled quantum dot. Nano Lett. 18, 5475 (2018).

ADS 
CAS 
PubMed 

Google Scholar
 

Mun, J. et al. Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena. Light.: Sci. Appl. 9, 139 (2020).

ADS 
CAS 
PubMed 

Google Scholar
 

Wang, S. et al. Angular momentum-dependent transmission of circularly polarized vortex beams through a plasmonic coaxial nanoring. IEEE Photonics 10, 5700109 (2018).


Google Scholar
 

Wang, Y.-P. et al. Nonreciprocity and Unidirectional Invisibility in Cavity Magnonics. Phys. Rev. Lett. 123, 127202 (2019).

ADS 
CAS 
PubMed 

Google Scholar
 

Zhang, X., Galda, A., Han, X., Jin, D. & Vinokur, V. M. Broadband nonreciprocity enabled by strong coupling of magnons and microwave photons. Phys. Rev. Appl. 13, 044039 (2020).

ADS 
CAS 

Google Scholar
 

Zhang, C. et al. Nonreciprocal multimode and indirect couplings in cavity magnonics. Phys. Rev. B 103, 184427 (2021).

ADS 
CAS 

Google Scholar
 

Yu, W., Yu, T. & Bauer, G. E. W. Circulating cavity magnon polaritons. Phys. Rev. B 102, 064416 (2020).

ADS 
CAS 

Google Scholar
 

Bourhill, J. et al. Generation of circulating cavity magnon polaritons. Phys. Rev. Appl. 19, 014030 (2023).

ADS 
CAS 

Google Scholar
 

Yu, T. et al. Magnon accumulation in chirally coupled magnets. Phys. Rev. Lett. 124, 107202 (2020).

ADS 
CAS 
PubMed 

Google Scholar
 

Yu, T., Zhang, X., Sharma, S., Blanter, Y. M. & Bauer, G. E. W. Chiral coupling of magnons in waveguides. Phys. Rev. B 101, 094414 (2020).

ADS 
CAS 

Google Scholar
 

Ye, X., Xia, K., Bauer, G. E. W. & Yu, T. Chiral-damping-enhanced magnon transmission. Phys. Rev. Appl. 22, L011001 (2024).

CAS 

Google Scholar
 

Fan, Z. Y., Zuo, X., Li, H. T. & Li, J. Nonreciprocal entanglement in cavity magnomechanics exploiting chiral cavity–magnon coupling. Fundamental Res. https://doi.org/10.1016/j.fmre.2025.02.012 (2025).

Wang, Z.-Y., Qian, J., Wang, Y. P., Li, J. & You, J. Q. Realization of the unidirectional amplification in a cavity magnonic system. Appl. Phys. Lett. 123, 153904 (2023).

ADS 
CAS 

Google Scholar
 

Qian, J. et al. Manipulation of the zero-damping conditions and unidirectional invisibility in cavity magnonics. Appl. Phys. Lett. 116, 192401 (2020).

ADS 

Google Scholar
 

Kimble, H. J. The quantum internet. Nature 453, 1023 (2008).

ADS 
CAS 
PubMed 

Google Scholar
 

Reiserer, A. & Rempe, G. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379 (2015).

ADS 
CAS 

Google Scholar
 

Pichler, H., Ramos, T., Daley, A. J. & Zoller, P. Quantum optics of chiral spin networks. Phys. Rev. A 91, 042116 (2015).

ADS 

Google Scholar
 

Mahmoodian, S., Lodahl, P. & Sø rensen, A. S. Quantum networks with chiral-light-matter interaction in waveguides. Phys. Rev. Lett. 117, 240501 (2016).

ADS 
PubMed 

Google Scholar
 

Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997).

ADS 
CAS 

Google Scholar
 

Vermersch, B., Guimond, P.-O., Pichler, H. & Zoller, P. Quantum state transfer via noisy photonic and phononic waveguides. Phys. Rev. Lett. 118, 133601 (2017).

ADS 
CAS 
PubMed 

Google Scholar
 

Anderson, B. M., Ma, R., Owens, C., Schuster, D. I. & Simon, J. Engineering topological many-body materials in microwave cavity arrays. Phys. Rev. X 6, 041043 (2016).


Google Scholar
 

Chong, Y. D., Ge, L., Cao, H. & Stone, A. D. Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010).

ADS 
CAS 
PubMed 

Google Scholar
 

Ra’di, Y., Simovski, C. R. & Tretyakov, S. A. Thin perfect absorbers for electromagnetic waves: theory, design, and realizations. Phys. Rev. Appl. 3, 037001 (2015).

ADS 

Google Scholar
 

Baranov, D. G., Krasnok, A., Shegai, T., Alù, A. & Chong, Y. Coherent perfect absorbers: linear control of light with light. Nat. Rev. Mater. 2, 17064 (2017).

ADS 
CAS 

Google Scholar
 

Wang, C. Q., William, R. S., Stone, A. D. & Yang, L. Coherent perfect absorption at an exceptional point. Science 373, 1261 (2021).

ADS 
CAS 
PubMed 

Google Scholar
 

Pichler, K. et al. Random anti-lasing through coherent perfect absorption in a disordered medium. Nature 567, 351 (2019).

ADS 
CAS 
PubMed 

Google Scholar
 

Slobodkin, Y. et al. Massively degenerate coherent perfect absorber for arbitrary wavefronts. Science 377, 995 (2022).

ADS 
CAS 
PubMed 

Google Scholar
 

Aeschlimann, M. et al. Perfect absorption in nanotextured thin films via Anderson-localized photon modes. Nat. Photonics 9, 663 (2015).

ADS 
CAS 

Google Scholar
 

Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R. & Padilla, W. J. Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008).

ADS 
CAS 
PubMed 

Google Scholar
 

Müllers, A. et al. Coherent perfect absorption of nonlinear matter waves. Sci. Adv. 4, eaat6539 (2018).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Qian, J. et al. Non-Hermitian control between absorption and transparency in perfect zero-reflection magnonics. Nat. Commun. 14, 3437 (2023).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rao, J. W. et al. Interferometric control of magnon-induced nearly perfect absorption in cavity magnonics. Nat. Commun. 12, 1933 (2021).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wan, W. et al. Time-reversed lasing and interferometric control of absorption. Science 331, 889 (2011).

ADS 
CAS 
PubMed 

Google Scholar
 

Soleymani, S. et al. Chiral and degenerate perfect absorption on exceptional surfaces. Nat. Commun. 13, 599 (2022).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kim, S. et al. Electronically tunable perfect absorption in graphene. Nano Lett. 18, 971 (2018).

ADS 
CAS 
PubMed 

Google Scholar
 

Bliokh, K. Y., Bekshaev, A. Y. & Nori, F. Extraordinary momentum and spin in evanescent waves. Nat. Commun. 5, 3300 (2014).

ADS 
PubMed 

Google Scholar
 

Mechelen, T. V. & Jacob, Z. Universal spin-momentum locking of evanescent waves. Optica 3, 118 (2016).

ADS 

Google Scholar
 

Bliokh, K. Y., Leykam, D., Lein, M. & Nori, F. Topological non-Hermitian origin of surface Maxwell waves. Nat. Commun. 10, 580 (2019).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bliokh, K. Y., Smirnova, D. & Nori, F. Quantum spin Hall effect of light. Science 348, 1448 (2015).

ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Bliokh, K. Y. & Nori, F. Transverse and longitudinal angular momenta of light. Phys. Rep. 592, 1 (2015).

ADS 
MathSciNet 

Google Scholar
 

Bliokh, K. Y., Rodriguez-Fortuno, F. J., Nori, F. & Zayats, A. V. Spin-orbit interactions of light. Nat. Photonics 9, 796 (2015).

ADS 
CAS 

Google Scholar
 

Petersen, J., Volz, J. & Rauschenbeutel, A. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light. Science 346, 67 (2014).

ADS 
CAS 
PubMed 

Google Scholar
 

Hallett, D., Foster, A. P., Whittaker, D., Skolnick, M. S. & Wilson, L. R. Engineering chiral light-matter interactions in a waveguide coupled nanocavity. ACS Photonics 9, 706 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rodriguez-Fortuno, F. J. et al. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science 340, 328 (2013).

ADS 
CAS 
PubMed 

Google Scholar
 

Luo, S., He, L. & Li, M. Spin-momentum locked interaction between guided photons and surface electrons in topological insulators. Nat. Commun. 8, 2141 (2017).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Söllner, I. et al. Deterministic photon-emitter coupling in chiral photonic circuits. Nat. Nanotechnol. 10, 775 (2015).

ADS 
PubMed 

Google Scholar
 

Luxmoore, I. J. et al. Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons. Phys. Rev. Lett. 110, 037402 (2013).

ADS 
CAS 
PubMed 

Google Scholar
 

Shomroni, I. et al. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345, 903 (2014).

ADS 
CAS 
PubMed 

Google Scholar
 

Chiasera, A. et al. Spherical whispering-gallery-mode microresonators. Laser Photonics Rev. 4, 457 (2010).

ADS 
CAS 

Google Scholar
 

Bliokh, Y. K. & Nori, F. Transverse spin of a surface polariton. Phys. Rev. A 85, 061801 (2012).

ADS 

Google Scholar
 

Liu, J. F. et al. Spin-controlled reconfigurable excitations of spoof surface plasmon polaritons by a compact structure. Laser Photonics Rev. 17, 2200257 (2023).

ADS 

Google Scholar
 

Liu, J. F., Wu, J. W., Fu, X., Tang, W. & Cui, T. J. Arbitrary polarization syntheses based on spin-momentum locking in spoof surface plasmon polaritons. Adv. Optical Mater. 11, 2202618 (2023).

CAS 

Google Scholar
 

Pendry, J. B., Martin-Moreno, L. & Garcia-Vidal, F. J. Mimicking surface plasmons with structured surfaces. Science 305, 847 (2004).

ADS 
CAS 
PubMed 

Google Scholar
 

Francisco, J. et al. Spoof surface plasmon photonics. Rev. Mod. Phys. 94, 025004 (2022).


Google Scholar
 

Maier, S. A., Andrews, S. R., Martin-Moreno, L. & Garcia-Vidal, F. J. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys. Rev. Lett. 97, 176805 (2006).

ADS 
PubMed 

Google Scholar
 

Cai, M., Painter, O. & Vahala, K. J. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett. 85, 74 (2000).

ADS 
CAS 
PubMed 

Google Scholar
 

Yu, S. Y. et al. Critical couplings in topological-insulator waveguide-resonator systems observed in elastic waves. Natl Sci. Rev. 8, nwaa262 (2021).

CAS 
PubMed 

Google Scholar
 

Yang, Y. et al. Anomalous long-distance coherence in critically-driven cavity magnonics. Phys. Rev. Lett. 132, 206972 (2024).


Google Scholar
 

Ma, H. F., Shen, X., Cheng, Q., Jiang, W. X. & Cui, T. J. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photonics Rev. 8, 146 (2014).

ADS 
CAS 

Google Scholar
 

Gloppe, A., Hisatomi, R., Nakata, Y., Nakamura, Y. & Usami, K. Resonant magnetic induction tomography of a magnetized sphere. Phys. Rev. Appl. 12, 014061 (2019).

ADS 
CAS 

Google Scholar
 

Xu, J. et al. Slow-wave hybrid magnonics. Phys. Rev. Lett. 132, 116701 (2024).

ADS 
CAS 
PubMed 

Google Scholar
 

Han, Y. et al. Bound chiral magnonic polariton states for ideal microwave isolation. Sci. Adv. 9, eadg4730 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
Â