McClenachan, L., Cooper, A. B., McKenzie, M. G. & Drew, J. A. The importance of surprising results and best practices in historical ecology. BioScience 65, 932–939 (2015).

Article 

Google Scholar
 

Clavero, M. The King’s aquatic desires: 16th-century fish and crayfish introductions into Spain. Fish. Fish. 23, 1251–1263 (2022).

Article 

Google Scholar
 

Monsarrat, S., Novellie, P., Rushworth, I. & Kerley, G. Shifted distribution baselines: neglecting long-term biodiversity records risks overlooking potentially suitable habitat for conservation management. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20190215 (2019).

Article 

Google Scholar
 

Clavero, M., García-Reyes, A., Fernández-Gil, A., Revilla, E. & Fernández, N. Where wolves were: setting historical baselines for wolf recovery in Spain. Anim. Conserv. 26, 239–249 (2023).

Article 

Google Scholar
 

Collins, A. C., Böhm, M. & Collen, B. Choice of baseline affects historical population trends in hunted mammals of North America. Biol. Conserv. 242, 108421 (2020).

Article 

Google Scholar
 

Grace, M. et al. Using historical and palaeoecological data to inform ambitious species recovery targets. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20190297 (2019).

Article 

Google Scholar
 

Thurstan, R. H. et al. Records reveal the vast historical extent of European oyster reef ecosystems. Nat. Sustain. https://doi.org/10.1038/s41893-024-01441-4 (2024).

Szabó, P. Historical ecology: past, present and future. Biol. Rev. 90, 997–1014 (2015).

Article 

Google Scholar
 

Armstrong, C. G. et al. Anthropological contributions to historical ecology: 50 questions, infinite prospects. PLoS ONE 12, e0171883 (2017).

Article 

Google Scholar
 

Russell, E. W. B. People and the Land Through Time: Linking Ecology and History (Yale Univ. Press, 1997).

Haidvogl, G. et al. Typology of historical sources and the reconstruction of long-term historical changes of riverine fish: a case study of the Austrian Danube and northern Russian rivers. Ecol. Freshw. Fish. 23, 498–515 (2014).

Article 

Google Scholar
 

Mottl, O. et al. Global acceleration in rates of vegetation change over the past 18,000 years. Science 372, 860–864 (2021).

Article 
CAS 

Google Scholar
 

Buldrini, F. et al. Botanical memory: five centuries of floristic changes revealed by a Renaissance herbarium (Ulisse Aldrovandi, 1551–1586). R. Soc. Open. Sci. 10, 230866 (2023).

Article 

Google Scholar
 

Tomscha, S. A. et al. A guide to historical data sets for reconstructing ecosystem service change over time. BioScience 66, 747–762 (2016).

Article 

Google Scholar
 

Clavero, M. & Hermoso, V. Historical data to plan the recovery of the European eel. J. Appl. Ecol. 52, 960–968 (2015).

Article 

Google Scholar
 

Sales, L. P. et al. The effect of past defaunation on ranges, niches, and future biodiversity forecasts. Glob. Change Biol. 28, 3683–3693 (2022).

Article 
CAS 

Google Scholar
 

Viana, D. S., Oficialdegui, F. J., Soriano, M. D. C., Hermoso, V. & Clavero, M. Niche dynamics along two centuries of multiple crayfish invasions. J. Anim. Ecol. 92, 2138–2150 (2023).

Article 

Google Scholar
 

Vellend, M., Brown, C. D., Kharouba, H. M., McCune, J. L. & Myers-Smith, I. H. Historical ecology: using unconventional data sources to test for effects of global environmental change. Am. J. Bot. 100, 1294–1305 (2013).

Article 

Google Scholar
 

Nogué, S. et al. The human dimension of biodiversity changes on islands. Science 372, 488–491 (2021).

Article 

Google Scholar
 

Stegner, M. A. & Spanbauer, T. L. North American pollen records provide evidence for macroscale ecological changes in the Anthropocene. Proc. Natl Acad. Sci. USA 120, e2306815120 (2023).

Article 
CAS 

Google Scholar
 

Davies, A. L., Streeter, R., Lawson, I. T., Roucoux, K. H. & Hiles, W. The application of resilience concepts in palaeoecology. Holocene 28, 1523–1534 (2018).

Article 

Google Scholar
 

Buma, B. et al. The value of linking paleoecological and neoecological perspectives to understand spatially-explicit ecosystem resilience. Landsc. Ecol. 34, 17–33 (2019).

Article 

Google Scholar
 

Benito, B. M., Gil-Romera, G. & Birks, H. J. B. Ecological memory at millennial time-scales: the importance of data constraints, species longevity and niche features. Ecography 43, 1–10 (2020).

Article 

Google Scholar
 

Frisch, D. et al. A millennial-scale chronicle of evolutionary responses to cultural eutrophication in Daphnia. Ecol. Lett. 17, 360–368 (2014).

Article 

Google Scholar
 

Frisch, D., Becker, D. & Wojewodzic, M. W. Dissecting the transcriptomic basis of phenotypic evolution in an aquatic keystone grazer. Mol. Biol. Evol. 37, 475–487 (2020).

Article 
CAS 

Google Scholar
 

Anderson, N. J., Bugmann, H., Dearing, J. A. & Gaillard, M.-J. Linking palaeoenvironmental data and models to understand the past and to predict the future. Trends Ecol. Evol. 21, 696–704 (2006).

Article 

Google Scholar
 

Willis, K. J., Bailey, R. M., Bhagwat, S. A. & Birks, H. J. B. Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data. Trends Ecol. Evol. 25, 583–591 (2010).

Article 
CAS 

Google Scholar
 

Monsarrat, S. & Svenning, J.-C. Using recent baselines as benchmarks for megafauna restoration places an unfair burden on the Global South. Ecography 2022, e05795 (2022).

Article 

Google Scholar
 

McKechnie, I. et al. Archaeological data provide alternative hypotheses on Pacific herring (Clupea pallasii) distribution, abundance, and variability. Proc. Natl Acad. Sci. USA 111, E807–E816 (2014).

Article 
CAS 

Google Scholar
 

Grenz, J. & Armstrong, C. G. Pop-up restoration in colonial contexts: applying an indigenous food systems lens to ecological restoration. Front. Sustain. Food Syst. 7, 1244790 (2023).

Article 

Google Scholar
 

Pooley, S. Historians are from Venus, ecologists are from Mars. Conserv. Biol. 27, 1481–1483 (2014).

Article 

Google Scholar
 

Crabtree, S. A. & Dunne, J. A. Towards a science of archaeoecology. Trends Ecol. Evol. 37, 976–984 (2022).

Article 

Google Scholar
 

Woodbridge, J. et al. What drives biodiversity patterns? Using long-term multidisciplinary data to discern centennial-scale change. J. Ecol. 109, 1396–1410 (2021).

Article 

Google Scholar
 

Swetnam, T. W., Allen, C. D. & Betancourt, J. L. Applied historical ecology: using the past to manage for the future. Ecol. Appl. 9, 1189–1206 (1999).

Article 

Google Scholar
 

Turner, N. J. et al. Cultural management of living trees: an international perspective. J. Ethnobiol. 29, 237–270 (2009).

Article 

Google Scholar
 

Rostain, S. et al. Two thousand years of garden urbanism in the Upper Amazon. Science 383, 183–189 (2024).

Article 
CAS 

Google Scholar
 

McClanahan, T. R. & Omukoto, J. O. Comparison of modern and historical fish catches (AD 750–1400) to inform goals for marine protected areas and sustainable fisheries. Conserv. Biol. 25, 945–955 (2011).

Article 

Google Scholar
 

Balée, W. & Erickson, C. Time and Complexity in Historical Ecology: Studies in the Neotropical Lowlands (Columbia Univ. Press, 2006).

Skovrind, M. et al. Elucidating the sustainability of 700  y of Inuvialuit beluga whale hunting in the Mackenzie River Delta, Northwest Territories, Canada. Proc. Natl Acad. Sci. USA 121, e2405993121 (2024).

Article 
CAS 

Google Scholar
 

Müllerová, J., Szabó, P. & Hédl, R. The rise and fall of traditional forest management in southern Moravia: a history of the past 700  years. For. Ecol. Manag. 331, 104–115 (2014).

Article 

Google Scholar
 

Östlund, L. et al. Culturally modified trees and forest structure at a Kawésqar ancient settlement at Río Batchelor, western Patagonia. Hum. Ecol. 48, 585–597 (2020).

Article 

Google Scholar
 

Ames, E. P. Atlantic cod stock structure in the Gulf of Maine. Fisheries 29, 10–28 (2004).

Article 

Google Scholar
 

Turner, N. J., Geralda Armstrong, C. & Lepofsky, D. Adopting a root: documenting ecological and cultural signatures of plant translocations in Northwestern North America. Am. Anthropol. 123, 879–897 (2021).

Article 

Google Scholar
 

Biró, M. et al. Oral history methods can reveal drivers of landscape transformation: understanding land-use legacies with local and traditional knowledge in Central Europe. People Nat. 6, 2463–2479 (2024).

Article 

Google Scholar
 

Fogerty, J. E. in The Historical Ecology Handbook: A Restorationist’s Guide to Reference Ecosystems (eds Egan, D. & Howell, E. A.) 101–120 (Oxford Univ. Press, 2001).

Letham, B., Lepofsky, D. & Greening, S. Wil Luunda ‘Waada aks (Where the Waters Meet): deep-time histories of shifting estuarine landscapes and human settlement in Laxgalts’ap watershed, northern British Columbia, Canada. J. Isl. Coast. Archaeol. 20, 174–203 (2023).

Article 

Google Scholar
 

Tattoni, C. Nomen omen. Toponyms predict recolonization and extinction patterns for large carnivores. Nat. Conserv. 37, 1 (2019).

Article 

Google Scholar
 

Cámara-Leret, R. & Bascompte, J. Language extinction triggers the loss of unique medicinal knowledge. Proc. Natl Acad. Sci. USA 118, e2103683118 (2021).

Article 

Google Scholar
 

Knopp, J. A., Levenstein, B., Watson, A., Ivanova, I. & Lento, J. Systematic review of documented Indigenous knowledge of freshwater biodiversity in the circumpolar Arctic. Freshw. Biol. 67, 194–209 (2022).

Article 

Google Scholar
 

Hughes, A. C. et al. Reconstructing cave past to manage and conserve cave present and future. Ecol. Indic. 155, 111051 (2023).

Article 

Google Scholar
 

Schulte, L. A. & Mladenoff, D. J. The original US public land survey records: their use and limitations in reconstructing presettlement vegetation. J. For. 99, 5–10 (2001).


Google Scholar
 

Viana, D. S., Blanco-Garrido, F., Delibes, M. & Clavero, M. A 16th-century biodiversity and crop inventory. Ecology 103, e3783 (2022).

Article 

Google Scholar
 

Barlow, G. The landscape of Domesday Suffolk. Landsc. Hist. 32, 19–36 (2011).

Article 

Google Scholar
 

d’Andrimont, R. et al. Harmonised LUCAS in-situ land cover and use database for field surveys from 2006 to 2018 in the European Union. Sci. Data 7, 352 (2020).

Article 

Google Scholar
 

Forejt, M., Dolejš, M., Zacharová, J. & Raška, P. Quantifying inconsistencies in old cadastral maps and their impact on land-use reconstructions. J. Land. Use Sci. 15, 570–584 (2020).

Article 

Google Scholar
 

Thurstan, R. H., Campbell, A. B. & Pandolfi, J. M. Nineteenth century narratives reveal historic catch rates for Australian snapper (Pagrus auratus). Fish. Fish. 17, 210–225 (2016).

Article 

Google Scholar
 

Clavero, M. Species substitutions driven by anthropogenic positive feedbacks: Spanish crayfish species as a case study. Biol. Conserv. 193, 80–85 (2016).

Article 

Google Scholar
 

Levin, P. S. & Dufault, A. Eating up the food web. Fish Fish. 11, 307–312 (2010).

Article 

Google Scholar
 

Walker, R. D. & Jones, G. A. Consumer-driven depletion of the northern diamondback terrapin in Chesapeake Bay. Mar. Coast. Fish. 10, 132–143 (2018).

Article 

Google Scholar
 

Turvey, S. T. & McClune, K. Expanding the historical baseline: using pre-modern archives to inform conservation from ecological and human perspectives. BioScience 75, 240–250 (2025).

Article 

Google Scholar
 

Primack, R. B., Higuchi, H. & Miller-Rushing, A. J. The impact of climate change on cherry trees and other species in Japan. Biol. Conserv. 142, 1943–1949 (2009).

Article 

Google Scholar
 

Zhang, Y. et al. Range contraction of the Yangtze finless porpoise inferred from classic Chinese poems. Curr. Biol. 35, R329–R330 (2025).

Article 
CAS 

Google Scholar
 

McBride, E., Winder, I. C. & Wüster, W. What bit the ancient Egyptians? Niche modelling to identify the snakes described in the Brooklyn medical papyrus. Environ. Archaeol. 30, 354–367 (2023).

Article 

Google Scholar
 

Van Houtan, K. S., McClenachan, L. & Kittinger, J. N. Seafood menus reflect long-term ocean changes. Front. Ecol. Env. 11, 289–290 (2013).

Article 

Google Scholar
 

Miyazaki, Y. & Murase, A. Fish rubbings, ‘gyotaku’, as a source of historical biodiversity data. ZooKeys 904, 89–101 (2020).

Article 

Google Scholar
 

Mustonen, T. Communal visual histories to detect environmental change in northern areas: examples of emerging North American and Eurasian practices. Ambio 44, 766–777 (2015).

Article 

Google Scholar
 

Tribot, A.-S., Faget, D., Villesseche, H., Richard, T. & Changeux, T. Multi-secular and regional trends of aquatic biodiversity in European early modern paintings: toward an ecological and historical significance. Ecol. Soc. 26, 26 (2021).

Article 

Google Scholar
 

Depauw, L. et al. The use of photos to investigate ecological change. J. Ecol. 110, 1220–1236 (2022).

Article 

Google Scholar
 

Burney, D. A. et al. Rock art from Andriamamelo Cave in the Beanka protected area of western Madagascar. J. Isl. Coast. Archaeol. 17, 171–194 (2022).

Article 

Google Scholar
 

Veth, P., Myers, C., Heaney, P. & Ouzman, S. Plants before farming: the deep history of plant-use and representation in the rock art of Australia’s Kimberley region. Quat. Int. 489, 26–45 (2018).

Article 

Google Scholar
 

Guagnin, M. et al. Rock art provides new evidence on the biogeography of kudu (Tragelaphus imberbis), wild dromedary, aurochs (Bos primigenius) and African wild ass (Equus africanus) in the early and middle Holocene of north-western Arabia. J. Biogeogr. 45, 727–740 (2018).

Article 

Google Scholar
 

Guidetti, P. & Micheli, F. Ancient art serving marine conservation. Front. Ecol. Environ. 9, 374–375 (2011).

Article 

Google Scholar
 

Iriarte, J. et al. Ice Age megafauna rock art in the Colombian Amazon? Philos. Trans. R. Soc. B: Biol. Sci. 377, 20200496 (2022).

Article 

Google Scholar
 

Begossi, A. & Caires, R. Art, fisheries and ethnobiology. J. Ethnobiol. Ethnomed. 11, 16 (2015).

Article 

Google Scholar
 

Warren, D. R. et al. An interdisciplinary framework for evaluating 19th century landscape paintings for ecological research. Ecosphere 14, e4649 (2023).

Article 

Google Scholar
 

Overduin-de Vries, A. M. O. & Smith, P. J. in Ichthyology in Context (1500–1880) (eds Smith, P. J. & Egmond, F.) 298–321 (Brill, 2023).

Hayashi, R. Past biodiversity: historical Japanese illustrations document the distribution of whales and their epibiotic barnacles. Ecol. Indic. 45, 687–691 (2014).

Article 

Google Scholar
 

McClenachan, L. Documenting loss of large trophy fish from the Florida keys with historical photographs. Conserv. Biol. 23, 636–643 (2009).

Article 

Google Scholar
 

De Frenne, P. et al. Using archived television video footage to quantify phenology responses to climate change. Methods Ecol. Evol. 9, 1874–1882 (2018).

Article 

Google Scholar
 

Rohde, R. F. & Hoffman, M. T. The historical ecology of namibian rangelands: vegetation change since 1876 in response to local and global drivers. Sci. Total. Environ. 416, 276–288 (2012).

Article 
CAS 

Google Scholar
 

Morueta-Holme, N., Iversen, L. L., Corcoran, D., Rahbek, C. & Normand, S. Unlocking ground-based imagery for habitat mapping. Trends Ecol. Evol. 39, 349–358 (2023).

Article 

Google Scholar
 

Sanseverino, M. E., Whitney, M. J. & Higgs, E. S. Exploring landscape change in mountain environments with the mountain legacy online image analysis toolkit. Mt. Res. Dev. 36, 407–416 (2016).

Article 

Google Scholar
 

Munteanu, C. et al. Forest and agricultural land change in the Carpathian region—a meta-analysis of long-term patterns and drivers of change. Land. Use Policy 38, 685–697 (2014).

Article 

Google Scholar
 

Loran, C., Haegi, S. & Ginzler, C. Comparing historical and contemporary maps—a methodological framework for a cartographic map comparison applied to Swiss maps. Int. J. Geogr. Inf. Sci. 32, 2123–2139 (2018).

Article 

Google Scholar
 

Bergès, L. & Dupouey, J.-L. Historical ecology and ancient forests: progress, conservation issues and scientific prospects, with some examples from the French case. J. Veg. Sci. 32, e12846 (2021).

Article 

Google Scholar
 

Wulder, M. A. et al. Fifty years of Landsat science and impacts. Remote. Sens. Environ. 280, 113195 (2022).

Article 

Google Scholar
 

Munteanu, C. et al. The potential of historical spy-satellite imagery to support research in ecology and conservation. BioScience 74, 159–168 (2024).

Article 

Google Scholar
 

Lišèák, V. Mapa mondi (Catalan Atlas of 1375), Majorcan cartographic school, and 14th century Asia. Proc. ICA 1, 1–8 (2018).

Article 

Google Scholar
 

Goldberg, E., Kirby, K., Hall, J. & Latham, J. The ancient woodland concept as a practical conservation tool in Great Britain. J. Nat. Conserv. 15, 109–119 (2007).

Article 

Google Scholar
 

Fuchs, R., Verburg, P. H., Clevers, J. G. P. W. & Herold, M. The potential of old maps and encyclopaedias for reconstructing historic European land cover/use change. Appl. Geogr. 59, 43–55 (2015).

Article 

Google Scholar
 

Kaim, D. et al. Broad scale forest cover reconstruction from historical topographic maps. Appl. Geogr. 67, 39–48 (2016).

Article 

Google Scholar
 

Lieskovský, J. et al. Historical land use dataset of the Carpathian region (1819–1980). J. Maps 14, 644–651 (2018).

Article 

Google Scholar
 

Thorne, J. H. & Le, T. N. California’s historic legacy for landscape change, the Wieslander Vegetation Type Maps. Madroño 63, 293–328 (2016).

Article 

Google Scholar
 

Walker, S. Cultural barriers to market integration: evidence from 19th century Austria. J. Comp. Econ. 46, 1122–1145 (2018).

Article 

Google Scholar
 

Kaim, D., Szwagrzyk, M., Dobosz, M., Troll, M. & Ostafin, K. Mid-19th-century building structure locations in Galicia and Austrian Silesia under the Habsburg monarchy. Earth Syst. Sci. Data 13, 1693–1709 (2021).

Article 

Google Scholar
 

Fretwell, P. T. et al. Using remote sensing to detect whale strandings in remote areas: the case of sei whales mass mortality in Chilean Patagonia. PLoS ONE 14, e0222498 (2019).

Article 
CAS 

Google Scholar
 

Padubidri, C., Kamilaris, A., Karatsiolis, S. & Kamminga, J. Counting sea lions and elephants from aerial photography using deep learning with density maps. Anim. Biotelemetry 9, 27 (2021).

Article 

Google Scholar
 

Park, D. S. et al. Herbarium records provide reliable phenology estimates in the understudied tropics. J. Ecol. 111, 327–337 (2023).

Article 

Google Scholar
 

Sanders, N. J., Cooper, N., Davis Rabosky, A. R. & Gibson, D. J. Leveraging natural history collections to understand the impacts of global change. J. Anim. Ecol. 92, 232–236 (2023).

Article 

Google Scholar
 

Fortibuoni, T., Libralato, S., Raicevich, S., Giovanardi, O. & Solidoro, C. Coding early naturalists’ accounts into long-term fish community changes in the Adriatic Sea (1800–2000). PLoS ONE 5, e15502 (2010).

Article 

Google Scholar
 

Egmond, F. C. in Ichthyology in Context (1500–1880) (eds Smith, P. J. & Egmond, F.) 147–243 (Brill, 2023).

Mullin, V. E. et al. First large-scale quantification study of DNA preservation in insects from natural history collections using genome-wide sequencing. Methods Ecol. Evol. 14, 360–371 (2023).

Article 

Google Scholar
 

Forcina, G. et al. Introduced and extinct: neglected archival specimens shed new light on the historical biogeography of an iconic avian species in the Mediterranean. Integrative Zool. 19, 887–897 (2024).

Article 
CAS 

Google Scholar
 

Meineke, E. K., Davies, T. J., Daru, B. H. & Davis, C. C. Biological collections for understanding biodiversity in the Anthropocene. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20170386 (2018).

Article 

Google Scholar
 

Lang, P. L. M., Willems, F. M., Scheepens, J. F., Burbano, H. A. & Bossdorf, O. Using herbaria to study global environmental change. N. Phytol. 221, 110–122 (2019).

Article 

Google Scholar
 

Law, W. & Salick, J. Human-induced dwarfing of Himalayan snow lotus, Saussurea laniceps (Asteraceae). Proc. Natl Acad. Sci. USA 102, 10218–10220 (2005).

Article 
CAS 

Google Scholar
 

Gotelli, N. J. et al. Estimating species relative abundances from museum records. Methods Ecol. Evol. 14, 431–443 (2023).

Article 

Google Scholar
 

Bartomeus, I., Stavert, J. R., Ward, D. & Aguado, O. Historical collections as a tool for assessing the global pollination crisis. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20170389 (2018).

Article 

Google Scholar
 

Rakosy, D., Ashman, T.-L., Zoller, L., Stanley, A. & Knight, T. M. Integration of historic collections can shed light on patterns of change in plant–pollinator interactions and pollination service. Funct. Ecol. 37, 218–233 (2023).

Article 
CAS 

Google Scholar
 

Saporiti, F. et al. Longer and less overlapping food webs in anthropogenically disturbed marine ecosystems: confirmations from the past. PLoS ONE 9, e103132 (2014).

Article 

Google Scholar
 

Morueta-Holme, N. et al. Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc. Natl Acad. Sci. USA 112, 12741–12745 (2015).

Article 
CAS 

Google Scholar
 

Smith, A. B. et al. Evaluation of species distribution models by resampling of sites surveyed a century ago by Joseph Grinnell. Ecography 36, 1017–1031 (2013).

Article 

Google Scholar
 

Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).

Article 
CAS 

Google Scholar
 

Vild, O. et al. Long-term shift towards shady and nutrient-rich habitats in Central European temperate forests. N. Phytol. 242, 1018–1028 (2024).

Article 
CAS 

Google Scholar
 

Abzhanov, A. Darwin’s Galápagos finches in modern biology. Philos. Trans. R. Soc. B: Biol. Sci. 365, 1001–1007 (2010).

Article 

Google Scholar
 

Hortal, J., Diniz-Filho, J. A. F., Low, M. E. Y., Stigall, A. L. & Yeo, D. C. J. Alfred Russel Wallace’s legacy: an interdisciplinary conception of evolution in space and time. NPJ Biodivers. 2, 1–3 (2023).

Article 

Google Scholar
 

Smol, J. P. et al. (eds.). Tracking Environmental Change Using Lake Sediments: Terrestrial, Algal, and Siliceous Indicators Vol. 3 (Springer Netherlands, 2001).

Brewer, S., Jackson, S. T. & Williams, J. W. Paleoecoinformatics: applying geohistorical data to ecological questions. Trends Ecol. Evol. 27, 104–112 (2012).

Article 

Google Scholar
 

Leunda, M. et al. Ice cave reveals environmental forcing of long-term Pyrenean tree line dynamics. J. Ecol. 107, 814–828 (2019).

Article 

Google Scholar
 

González-Sampériz, P. et al. Strong continentality and effective moisture drove unforeseen vegetation dynamics since the last interglacial at inland Mediterranean areas: the Villarquemado sequence in NE Iberia. Quat. Sci. Rev. 242, 106425 (2020).

Article 

Google Scholar
 

Ellegaard, M. et al. Dead or alive: sediment DNA archives as tools for tracking aquatic evolution and adaptation. Commun. Biol. 3, 1–11 (2020).

Article 

Google Scholar
 

Fairchild, I. J. & Baker, A. Speleothem Science: From Process to Past Environments (Wiley, 2012).

Chase, B. M. et al. Rock hyrax middens: a palaeoenvironmental archive for southern African drylands. Quat. Sci. Rev. 56, 107–125 (2012).

Article 

Google Scholar
 

Moore, G., Tessler, M., Cunningham, S. W., Betancourt, J. & Harbert, R. Paleo-metagenomics of North American fossil packrat middens: past biodiversity revealed by ancient DNA. Ecol. Evol. 10, 2530–2544 (2020).

Article 

Google Scholar
 

Campbell, J. W., Waters, M. N. & Rich, F. Guano core evidence of palaeoenvironmental change and Woodland Indian inhabitance in Fern Cave, Alabama, USA, from the mid-Holocene to present. Boreas 46, 462–469 (2017).

Article 

Google Scholar
 

Cook, E. R. et al. Megadroughts in North America: placing IPCC projections of hydroclimatic change in a long-term palaeoclimate context. J. Quat. Sci. 25, 48–61 (2010).

Article 

Google Scholar
 

Hoffman, K. M., Lertzman, K. P. & Starzomski, B. M. Ecological legacies of anthropogenic burning in a British Columbia coastal temperate rain forest. J. Biogeogr. 44, 2903–2915 (2017).

Article 

Google Scholar
 

Greiser, C. & Joosten, H. Archive value: measuring the palaeo-information content of peatlands in a conservation and compensation perspective. Int. J. Biodivers. Science, Ecosyst. Serv. Manag. 14, 209–220 (2018).

Article 

Google Scholar
 

Prentice, I. C. Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. Quat. Res. 23, 76–86 (1985).

Article 

Google Scholar
 

Vleminckx, J. et al. Soil charcoal to assess the impacts of past human disturbances on tropical forests. PLoS ONE 9, e108121 (2014).

Article 

Google Scholar
 

Orsini, L. et al. The evolutionary time machine: using dormant propagules to forecast how populations can adapt to changing environments. Trends Ecol. Evol. 28, 274–282 (2013).

Article 

Google Scholar
 

Sandom, C. J., Ejrnæs, R., Hansen, M. D. D. & Svenning, J.-C. High herbivore density associated with vegetation diversity in interglacial ecosystems. Proc. Natl Acad. Sci. USA 111, 4162–4167 (2014).

Article 
CAS 

Google Scholar
 

Parducci, L. et al. Ancient plant DNA in lake sediments. N. Phytol. 214, 924–942 (2017).

Article 
CAS 

Google Scholar
 

Capo, E. et al. Lake sedimentary DNA research on past terrestrial and aquatic biodiversity: overview and recommendations. Quaternary 4, 6 (2021).

Article 

Google Scholar
 

Anderson, N. J. Landscape disturbance and lake response: temporal and spatial perspectives. Frer 7, 77–120 (2014).

Article 

Google Scholar
 

Pearce, E. A. et al. Substantial light woodland and open vegetation characterized the temperate forest biome before Homo sapiens. Sci. Adv. 9, eadi9135 (2023).

Article 

Google Scholar
 

Izdebski, A. et al. Palaeoecological data indicates land-use changes across Europe linked to spatial heterogeneity in mortality during the Black Death pandemic. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01652-4 (2022).

Nikulina, A. et al. Hunter-gatherer impact on European interglacial vegetation: a modelling approach. Quat. Sci. Rev. 324, 108439 (2024).

Article 

Google Scholar
 

Pearce, E. A. et al. Drivers of vegetation structure differ between proposed natural reference conditions for temperate Europe. Glob. Ecol. Biogeogr. 34, e70020 (2025).

Article 

Google Scholar
 

Karitter, P. et al. Combining the resurrection approach with transplant experiments to investigate adaptation of plant populations to environmental change. Perspect. Plant. Ecol., Evol. Syst. 62, 125773 (2024).

Article 

Google Scholar
 

Wersebe, M. J. & Weider, L. J. Resurrection genomics provides molecular and phenotypic evidence of rapid adaptation to salinization in a keystone aquatic species. Proc. Natl Acad. Sci. USA 120, e2217276120 (2023).

Article 
CAS 

Google Scholar
 

Jackson, S. T. & Blois, J. L. Community ecology in a changing environment: perspectives from the quaternary. Proc. Natl Acad. Sci. USA 112, 4915–4921 (2015).

Article 
CAS 

Google Scholar
 

Rapacciuolo, G. & Blois, J. L. Understanding ecological change across large spatial, temporal and taxonomic scales: integrating data and methods in light of theory. Ecography 42, 1247–1266 (2019).

Article 

Google Scholar
 

Bayraktarov, E. et al. Do big unstructured biodiversity data mean more knowledge? Front. Ecol. Evol. 6, 239 (2019).

Article 

Google Scholar
 

Hughes, A. C. et al. Sampling biases shape our view of the natural world. Ecography 44, 1259–1269 (2021).

Article 

Google Scholar
 

Callaghan, C. T., Poore, A. G. B., Hofmann, M., Roberts, C. J. & Pereira, H. M. Large-bodied birds are over-represented in unstructured citizen science data. Sci. Rep. 11, 19073 (2021).

Article 
CAS 

Google Scholar
 

Lotze, H. K. et al. in Shifting Baselines: The Past and the Future of Ocean Fisheries (eds Jackson, J. B. C., Alexander, K. E. & Sala, E.) 137–161 (Island Press/Center for Resource Economics, 2011).

McClenachan, L. et al. Global research priorities for historical ecology to inform conservation. Endanger. Species Res. 54, 285–310 (2024).

Article 

Google Scholar
 

Fairhead, J. & Leach, M. in Misreading the African Landscape: Society and Ecology in a Forest-Savanna Mosaic (eds Fairhead, J. & Leach, M.) 55–85 (Cambridge Univ. Press, 1996).

Pluskowski, A., Brown, A. & Seetah, K. The challenges and future of environmental archaeology in Mauritius. Int. J. Histor. Archaeol. https://doi.org/10.1007/s10761-023-00727-1 (2024).

Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, eaah4787 (2017).

Article 

Google Scholar
 

Kittinger, J. N. et al. Historical reconstruction reveals recovery in Hawaiian coral reefs. PLoS ONE 6, e25460 (2011).

Article 
CAS 

Google Scholar
 

Gil-Romera, G., Lamb, H. F., Turton, D., Sevilla-Callejo, M. & Umer, M. Long-term resilience, bush encroachment patterns and local knowledge in a Northeast African savanna. Glob. Environ. Change 20, 612–626 (2010).

Article 

Google Scholar
 

Clavero, M. Shifting baselines and the conservation of non-native species. Conserv. Biol. 28, 1434–1436 (2014).

Article 

Google Scholar
 

Clavero, M., Nores, C., Kubersky-Piredda, S. & Centeno-Cuadros, A. Interdisciplinarity to reconstruct historical introductions: solving the status of cryptogenic crayfish. Biol. Rev. 91, 1036–1049 (2016).

Article 

Google Scholar
 

Szabó, P. et al. Trends and events through seven centuries: the history of a wetland landscape in the Czech Republic. Reg. Env. Change 17, 501–514 (2017).

Article 

Google Scholar
 

Li, B., Pan, R. & Oxnard, C. E. Extinction of snub-nosed monkeys in China during the past 400 years. Int. J. Primatol. 23, 1227–1244 (2002).

Article 

Google Scholar
 

Early-Capistrán, M.-M. et al. Reconstructing 290 years of a data-poor fishery through ethnographic and archival research: the East Pacific green turtle (Chelonia mydas) in Baja California, Mexico. Fish. Fish. 19, 57–77 (2018).

Article 

Google Scholar
 

Nelson, G. & Ellis, S. The history and impact of digitization and digital data mobilization on biodiversity research. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20170391 (2018).

Article 

Google Scholar
 

Nowak, M. M., Słupecka, K. & Jackowiak, B. Geotagging of natural history collections for reuse in environmental research. Ecol. Indic. 131, 108131 (2021).

Article 

Google Scholar
 

Chytrý, M. et al. European Vegetation Archive (EVA): an integrated database of European vegetation plots. Appl. Veg. Sci. 19, 173–180 (2016).

Article 

Google Scholar
 

Knollová, I. et al. ReSurveyEurope: a database of resurveyed vegetation plots in Europe. J. Veg. Sci. 35, e13235 (2024).

Article 

Google Scholar
 

Williams, J. W. et al. The Neotoma Paleoecology Database, a multiproxy, international, community-curated data resource. Quat. Res. 89, 156–177 (2018).

Article 

Google Scholar
 

Szabó, P. et al. More than trees: the challenges of creating a geodatabase to capture the complexity of forest history. Hist. Methods: A J. Quant. Interdiscip. Hist. 51, 175–189 (2018).

Article 

Google Scholar
 

Wilson, R. J. et al. Applying computer vision to digitised natural history collections for climate change research: temperature-size responses in British butterflies. Methods Ecol. Evol. 14, 372–384 (2023).

Article 

Google Scholar
 

Weeks, B. C. et al. A deep neural network for high-throughput measurement of functional traits on museum skeletal specimens. Methods Ecol. Evol. 14, 347–359 (2023).

Article 

Google Scholar
 

von Allmen, R. et al. Method development and application of object detection and classification to Quaternary fossil pollen sequences. Quat. Sci. Rev. 327, 108521 (2024).

Article 

Google Scholar
 

Dunker, S. et al. Pollen analysis using multispectral imaging flow cytometry and deep learning. N. Phytol. 229, 593–606 (2021).

Article 

Google Scholar
 

Nita, M. D., Munteanu, C., Gutman, G., Abrudan, I. V. & Radeloff, V. C. Widespread forest cutting in the aftermath of World War II captured by broad-scale historical Corona spy satellite photography. Remote. Sens. Environ. 204, 322–332 (2018).

Article 

Google Scholar
 

Kirillov, A. et al. Segment anything. In Proc. IEEE/CVF International Conf. on Computer Vision (ICCV), 4015–4026 (2023).

Tricker, J. et al. Assessing the accuracy of georeferenced landcover data derived from oblique imagery using machine learning. Remote. Sens. Ecol. Conserv. 10, 401–415 (2024).

Article 

Google Scholar
 

Bugeja, M., Dingli, A. & Seychell, D. in Rediscovering Heritage Through Technology: A Collection of Innovative Research Case Studies That Are Reworking The Way We Experience Heritage (eds. Seychell, D. & Dingli, A.) 3–23 (Springer International, 2020).

Muehlberger, G. et al. Transforming scholarship in the archives through handwritten text recognition: Transkribus as a case study. J. Doc. 75, 954–976 (2019).

Article 

Google Scholar
 

Suissa, O., Elmalech, A. & Zhitomirsky-Geffet, M. Text analysis using deep neural networks in digital humanities and information science. J. Assoc. Inf. Sci. Technol. 73, 268–287 (2022).

Article 

Google Scholar
 

Santana-Cordero, A. M. & Szabó, P. Exploring qualitative methods of historical ecology and their links with qualitative research. Int. J. Qual. Methods 18, 1609406919872112 (2019).

Article 

Google Scholar
 

Sun, J. et al. Automatic identification and morphological comparison of bivalve and brachiopod fossils based on deep learning. PeerJ. 11, e16200 (2023).

Article 

Google Scholar
 

Wei, G., Peng, C., Zhu, Q., Zhou, X. & Yang, B. Application of machine learning methods for paleoclimatic reconstructions from leaf traits. Int. J. Climatol. 41, E3249–E3262 (2021).

Article 

Google Scholar
 

Bledsoe, E. K. et al. Data rescue: saving environmental data from extinction. Proc. R. Soc. B: Biol. Sci. 289, 20220938 (2022).

Article 

Google Scholar
 

Knockaert, C. et al. Biodiversity data rescue in the framework of a long-term Kenya–Belgium cooperation in marine sciences. Sci. Data 6, 85 (2019).

Article 

Google Scholar
 

Rosi, E. J. et al. Give long-term datasets world heritage status. Science 378, 1180–1181 (2022).

Article 
CAS 

Google Scholar
 

Purgar, M., Glasziou, P., Klanjscek, T., Nakagawa, S. & Culina, A. Supporting study registration to reduce research waste. Nat. Ecol. Evol. 8, 1391–1399 (2024).

Article 

Google Scholar
 

Scott, S. L. et al. Documenting changing landscapes with rePhotoSA: a repeat photography and citizen science project in Southern Africa. Ecol. Inform. 64, 101390 (2021).

Article 

Google Scholar
 

Flowers, V., Frutos, C., MacKenzie, A. S., Fanning, R. & Fraser, E. E. Snap decisions: assessing participation and data quality in a citizen science program using repeat photography. Citizen Sci. Theory Practice 8, 62 (2023).

Article 

Google Scholar
 

Soul, L. C., Barclay, R. S., Bolton, A. & Wing, S. L. Fossil atmospheres: a case study of citizen science in question-driven palaeontological research. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20170388 (2018).

Article 

Google Scholar
 

Froese, G. Z. L. et al. Coupling paraecology and hunter GPS self-follows to quantify village bushmeat hunting dynamics across the landscape scale. Afr. J. Ecol. 60, 229–249 (2022).

Article 

Google Scholar
 

Tribot, A.-S., Faget, D., Richard, T. & Changeux, T. The role of pre-19th century art in conservation biology: an untapped potential for connecting with nature. Biol. Conserv. 276, 109791 (2022).

Article 

Google Scholar
 

Wieczorek, J. et al. Darwin Core: an evolving community-developed biodiversity data standard. PLoS ONE 7, e29715 (2012).

Article 
CAS 

Google Scholar
 

Guralnick, R., Walls, R. & Jetz, W. Humboldt Core—toward a standardized capture of biological inventories for biodiversity monitoring, modeling and assessment. Ecography 40, 001–012 (2017).


Google Scholar
 

Nieto-Lugilde, D. et al. Time to better integrate paleoecological research infrastructures with neoecology to improve understanding of biodiversity long-term dynamics and to inform future conservation. Environ. Res. Lett. 16, 095005 (2021).

Article 

Google Scholar
 

Tengö, M. et al. Weaving knowledge systems in IPBES, CBD and beyond—lessons learned for sustainability. Curr. Opin. Environ. Sustain. 26–27, 17–25 (2017).

Article 

Google Scholar
 

Davis, A. & Wagner, J. R. Who knows? On the importance of identifying “experts” when researching local ecological knowledge. Hum. Ecol. 31, 463–489 (2003).

Article 

Google Scholar
 

Liboiron, M. Decolonizing geoscience requires more than equity and inclusion. Nat. Geosci. 14, 876–877 (2021).

Article 
CAS 

Google Scholar
 

Swanson, H. A. et al. History as grounds for interdisciplinarity: promoting sustainable woodlands via an integrative ecological and socio-cultural perspective. One Earth 4, 226–237 (2021).

Article 

Google Scholar
 

Svenning, J.-C., Kerr, M. R., Mungi, N. A., Ordonez, A. & Riede, F. Defining the anthropocene as a geological epoch captures human impacts’ triphasic nature to empower science and action. One Earth 7, 1678–1681 (2024).

Article 

Google Scholar
 

Navarro, L. M. et al. Monitoring biodiversity change through effective global coordination. Curr. Opin. Environ. Sustain. 29, 158–169 (2017).

Article 

Google Scholar
 

Perino, A. et al. Biodiversity post-2020: closing the gap between global targets and national-level implementation. Conserv. Lett. 15, e12848 (2022).

Article 

Google Scholar
 

Gwinn, N. E. & Rinaldo, C. The Biodiversity Heritage Library: sharing biodiversity literature with the world. IFLA J. 35, 25–34 (2009).

Article 

Google Scholar
 

Domínguez-Castro, F. et al. Dating historical droughts from religious ceremonies, the international pro pluvia rogation database. Sci. Data 8, 186 (2021).

Article 

Google Scholar
 

Buckland, P. I. SEAD – the Strategic Environmental Archaeology Database inter-linking multiproxy environmental data with archaeological investigations and ecology. In Archaeology in the Digital Era: Papers from the 40th Annual Conference of Computer Applications and Quantitative Methods in Archaeology (CAA), Southampton, 26-29 March 2012 (eds Chrysanthi, A. et al.) 320–331 (Amsterdam Univ. Press, 2014).

Guiterman, C. H. et al. The International Tree-Ring Data Bank at fifty: status of stewardship for future scientific discovery. Tree-Ring Res. 80, 13–18 (2024).

Article 

Google Scholar
 

Lawenda, M., Wiland-Szymańska, J., Nowak, M. M., Jędrasiak, D. & Jackowiak, B. The Adam Mickiewicz University Nature Collections IT system (AMUNATCOLL): metadata structure, database and operational procedures. Biodivers. Res. Conserv. 65, 35–48 (2022).

Article 

Google Scholar
 

Anderson, N. J. et al. Limnological and palaeolimnological studies of lakes in south-western Greenland. Geol. Greenl. Surv. Bull. 183, 68–74 (1999).

Article 

Google Scholar
 

Forman, R. T. T. & Russell, E. W. B. Evaluation of historical data in ecology. Bull. Ecol. Soc. Am. 64, 5–7 (1983).

Article 

Google Scholar
 

Reithmaier, T. in The Historical Ecology Handbook (eds Egan, D. & Howell, E. A.) 121–146 (Island Press, 2001).

Kaim, D. Land cover changes in the Polish Carpathians based on repeat photography. Carpath. J. Earth Environ. Sci. 12, 485–498 (2017).


Google Scholar
 

Clavero, M., García-Reyes, A., Fernández-Gil, A., Revilla, E. & Fernández, N. On the misuse of historical data to set conservation baselines: wolves in Spain as an example. Biol. Conserv. 276, 109810 (2022).

Article 

Google Scholar