McClenachan, L., Cooper, A. B., McKenzie, M. G. & Drew, J. A. The importance of surprising results and best practices in historical ecology. BioScience 65, 932–939 (2015).
Clavero, M. The King’s aquatic desires: 16th-century fish and crayfish introductions into Spain. Fish. Fish. 23, 1251–1263 (2022).
Monsarrat, S., Novellie, P., Rushworth, I. & Kerley, G. Shifted distribution baselines: neglecting long-term biodiversity records risks overlooking potentially suitable habitat for conservation management. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20190215 (2019).
Clavero, M., García-Reyes, A., Fernández-Gil, A., Revilla, E. & Fernández, N. Where wolves were: setting historical baselines for wolf recovery in Spain. Anim. Conserv. 26, 239–249 (2023).
Collins, A. C., Böhm, M. & Collen, B. Choice of baseline affects historical population trends in hunted mammals of North America. Biol. Conserv. 242, 108421 (2020).
Grace, M. et al. Using historical and palaeoecological data to inform ambitious species recovery targets. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20190297 (2019).
Thurstan, R. H. et al. Records reveal the vast historical extent of European oyster reef ecosystems. Nat. Sustain. https://doi.org/10.1038/s41893-024-01441-4 (2024).
Szabó, P. Historical ecology: past, present and future. Biol. Rev. 90, 997–1014 (2015).
Armstrong, C. G. et al. Anthropological contributions to historical ecology: 50 questions, infinite prospects. PLoS ONE 12, e0171883 (2017).
Russell, E. W. B. People and the Land Through Time: Linking Ecology and History (Yale Univ. Press, 1997).
Haidvogl, G. et al. Typology of historical sources and the reconstruction of long-term historical changes of riverine fish: a case study of the Austrian Danube and northern Russian rivers. Ecol. Freshw. Fish. 23, 498–515 (2014).
Mottl, O. et al. Global acceleration in rates of vegetation change over the past 18,000 years. Science 372, 860–864 (2021).
Buldrini, F. et al. Botanical memory: five centuries of floristic changes revealed by a Renaissance herbarium (Ulisse Aldrovandi, 1551–1586). R. Soc. Open. Sci. 10, 230866 (2023).
Tomscha, S. A. et al. A guide to historical data sets for reconstructing ecosystem service change over time. BioScience 66, 747–762 (2016).
Clavero, M. & Hermoso, V. Historical data to plan the recovery of the European eel. J. Appl. Ecol. 52, 960–968 (2015).
Sales, L. P. et al. The effect of past defaunation on ranges, niches, and future biodiversity forecasts. Glob. Change Biol. 28, 3683–3693 (2022).
Viana, D. S., Oficialdegui, F. J., Soriano, M. D. C., Hermoso, V. & Clavero, M. Niche dynamics along two centuries of multiple crayfish invasions. J. Anim. Ecol. 92, 2138–2150 (2023).
Vellend, M., Brown, C. D., Kharouba, H. M., McCune, J. L. & Myers-Smith, I. H. Historical ecology: using unconventional data sources to test for effects of global environmental change. Am. J. Bot. 100, 1294–1305 (2013).
Nogué, S. et al. The human dimension of biodiversity changes on islands. Science 372, 488–491 (2021).
Stegner, M. A. & Spanbauer, T. L. North American pollen records provide evidence for macroscale ecological changes in the Anthropocene. Proc. Natl Acad. Sci. USA 120, e2306815120 (2023).
Davies, A. L., Streeter, R., Lawson, I. T., Roucoux, K. H. & Hiles, W. The application of resilience concepts in palaeoecology. Holocene 28, 1523–1534 (2018).
Buma, B. et al. The value of linking paleoecological and neoecological perspectives to understand spatially-explicit ecosystem resilience. Landsc. Ecol. 34, 17–33 (2019).
Benito, B. M., Gil-Romera, G. & Birks, H. J. B. Ecological memory at millennial time-scales: the importance of data constraints, species longevity and niche features. Ecography 43, 1–10 (2020).
Frisch, D. et al. A millennial-scale chronicle of evolutionary responses to cultural eutrophication in Daphnia. Ecol. Lett. 17, 360–368 (2014).
Frisch, D., Becker, D. & Wojewodzic, M. W. Dissecting the transcriptomic basis of phenotypic evolution in an aquatic keystone grazer. Mol. Biol. Evol. 37, 475–487 (2020).
Anderson, N. J., Bugmann, H., Dearing, J. A. & Gaillard, M.-J. Linking palaeoenvironmental data and models to understand the past and to predict the future. Trends Ecol. Evol. 21, 696–704 (2006).
Willis, K. J., Bailey, R. M., Bhagwat, S. A. & Birks, H. J. B. Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data. Trends Ecol. Evol. 25, 583–591 (2010).
Monsarrat, S. & Svenning, J.-C. Using recent baselines as benchmarks for megafauna restoration places an unfair burden on the Global South. Ecography 2022, e05795 (2022).
McKechnie, I. et al. Archaeological data provide alternative hypotheses on Pacific herring (Clupea pallasii) distribution, abundance, and variability. Proc. Natl Acad. Sci. USA 111, E807–E816 (2014).
Grenz, J. & Armstrong, C. G. Pop-up restoration in colonial contexts: applying an indigenous food systems lens to ecological restoration. Front. Sustain. Food Syst. 7, 1244790 (2023).
Pooley, S. Historians are from Venus, ecologists are from Mars. Conserv. Biol. 27, 1481–1483 (2014).
Crabtree, S. A. & Dunne, J. A. Towards a science of archaeoecology. Trends Ecol. Evol. 37, 976–984 (2022).
Woodbridge, J. et al. What drives biodiversity patterns? Using long-term multidisciplinary data to discern centennial-scale change. J. Ecol. 109, 1396–1410 (2021).
Swetnam, T. W., Allen, C. D. & Betancourt, J. L. Applied historical ecology: using the past to manage for the future. Ecol. Appl. 9, 1189–1206 (1999).
Turner, N. J. et al. Cultural management of living trees: an international perspective. J. Ethnobiol. 29, 237–270 (2009).
Rostain, S. et al. Two thousand years of garden urbanism in the Upper Amazon. Science 383, 183–189 (2024).
McClanahan, T. R. & Omukoto, J. O. Comparison of modern and historical fish catches (AD 750–1400) to inform goals for marine protected areas and sustainable fisheries. Conserv. Biol. 25, 945–955 (2011).
Balée, W. & Erickson, C. Time and Complexity in Historical Ecology: Studies in the Neotropical Lowlands (Columbia Univ. Press, 2006).
Skovrind, M. et al. Elucidating the sustainability of 700 y of Inuvialuit beluga whale hunting in the Mackenzie River Delta, Northwest Territories, Canada. Proc. Natl Acad. Sci. USA 121, e2405993121 (2024).
Müllerová, J., Szabó, P. & Hédl, R. The rise and fall of traditional forest management in southern Moravia: a history of the past 700 years. For. Ecol. Manag. 331, 104–115 (2014).
Östlund, L. et al. Culturally modified trees and forest structure at a Kawésqar ancient settlement at Río Batchelor, western Patagonia. Hum. Ecol. 48, 585–597 (2020).
Ames, E. P. Atlantic cod stock structure in the Gulf of Maine. Fisheries 29, 10–28 (2004).
Turner, N. J., Geralda Armstrong, C. & Lepofsky, D. Adopting a root: documenting ecological and cultural signatures of plant translocations in Northwestern North America. Am. Anthropol. 123, 879–897 (2021).
Biró, M. et al. Oral history methods can reveal drivers of landscape transformation: understanding land-use legacies with local and traditional knowledge in Central Europe. People Nat. 6, 2463–2479 (2024).
Fogerty, J. E. in The Historical Ecology Handbook: A Restorationist’s Guide to Reference Ecosystems (eds Egan, D. & Howell, E. A.) 101–120 (Oxford Univ. Press, 2001).
Letham, B., Lepofsky, D. & Greening, S. Wil Luunda ‘Waada aks (Where the Waters Meet): deep-time histories of shifting estuarine landscapes and human settlement in Laxgalts’ap watershed, northern British Columbia, Canada. J. Isl. Coast. Archaeol. 20, 174–203 (2023).
Tattoni, C. Nomen omen. Toponyms predict recolonization and extinction patterns for large carnivores. Nat. Conserv. 37, 1 (2019).
Cámara-Leret, R. & Bascompte, J. Language extinction triggers the loss of unique medicinal knowledge. Proc. Natl Acad. Sci. USA 118, e2103683118 (2021).
Knopp, J. A., Levenstein, B., Watson, A., Ivanova, I. & Lento, J. Systematic review of documented Indigenous knowledge of freshwater biodiversity in the circumpolar Arctic. Freshw. Biol. 67, 194–209 (2022).
Hughes, A. C. et al. Reconstructing cave past to manage and conserve cave present and future. Ecol. Indic. 155, 111051 (2023).
Schulte, L. A. & Mladenoff, D. J. The original US public land survey records: their use and limitations in reconstructing presettlement vegetation. J. For. 99, 5–10 (2001).
Viana, D. S., Blanco-Garrido, F., Delibes, M. & Clavero, M. A 16th-century biodiversity and crop inventory. Ecology 103, e3783 (2022).
Barlow, G. The landscape of Domesday Suffolk. Landsc. Hist. 32, 19–36 (2011).
d’Andrimont, R. et al. Harmonised LUCAS in-situ land cover and use database for field surveys from 2006 to 2018 in the European Union. Sci. Data 7, 352 (2020).
Forejt, M., Dolejš, M., Zacharová, J. & Raška, P. Quantifying inconsistencies in old cadastral maps and their impact on land-use reconstructions. J. Land. Use Sci. 15, 570–584 (2020).
Thurstan, R. H., Campbell, A. B. & Pandolfi, J. M. Nineteenth century narratives reveal historic catch rates for Australian snapper (Pagrus auratus). Fish. Fish. 17, 210–225 (2016).
Clavero, M. Species substitutions driven by anthropogenic positive feedbacks: Spanish crayfish species as a case study. Biol. Conserv. 193, 80–85 (2016).
Levin, P. S. & Dufault, A. Eating up the food web. Fish Fish. 11, 307–312 (2010).
Walker, R. D. & Jones, G. A. Consumer-driven depletion of the northern diamondback terrapin in Chesapeake Bay. Mar. Coast. Fish. 10, 132–143 (2018).
Turvey, S. T. & McClune, K. Expanding the historical baseline: using pre-modern archives to inform conservation from ecological and human perspectives. BioScience 75, 240–250 (2025).
Primack, R. B., Higuchi, H. & Miller-Rushing, A. J. The impact of climate change on cherry trees and other species in Japan. Biol. Conserv. 142, 1943–1949 (2009).
Zhang, Y. et al. Range contraction of the Yangtze finless porpoise inferred from classic Chinese poems. Curr. Biol. 35, R329–R330 (2025).
McBride, E., Winder, I. C. & Wüster, W. What bit the ancient Egyptians? Niche modelling to identify the snakes described in the Brooklyn medical papyrus. Environ. Archaeol. 30, 354–367 (2023).
Van Houtan, K. S., McClenachan, L. & Kittinger, J. N. Seafood menus reflect long-term ocean changes. Front. Ecol. Env. 11, 289–290 (2013).
Miyazaki, Y. & Murase, A. Fish rubbings, ‘gyotaku’, as a source of historical biodiversity data. ZooKeys 904, 89–101 (2020).
Mustonen, T. Communal visual histories to detect environmental change in northern areas: examples of emerging North American and Eurasian practices. Ambio 44, 766–777 (2015).
Tribot, A.-S., Faget, D., Villesseche, H., Richard, T. & Changeux, T. Multi-secular and regional trends of aquatic biodiversity in European early modern paintings: toward an ecological and historical significance. Ecol. Soc. 26, 26 (2021).
Depauw, L. et al. The use of photos to investigate ecological change. J. Ecol. 110, 1220–1236 (2022).
Burney, D. A. et al. Rock art from Andriamamelo Cave in the Beanka protected area of western Madagascar. J. Isl. Coast. Archaeol. 17, 171–194 (2022).
Veth, P., Myers, C., Heaney, P. & Ouzman, S. Plants before farming: the deep history of plant-use and representation in the rock art of Australia’s Kimberley region. Quat. Int. 489, 26–45 (2018).
Guagnin, M. et al. Rock art provides new evidence on the biogeography of kudu (Tragelaphus imberbis), wild dromedary, aurochs (Bos primigenius) and African wild ass (Equus africanus) in the early and middle Holocene of north-western Arabia. J. Biogeogr. 45, 727–740 (2018).
Guidetti, P. & Micheli, F. Ancient art serving marine conservation. Front. Ecol. Environ. 9, 374–375 (2011).
Iriarte, J. et al. Ice Age megafauna rock art in the Colombian Amazon? Philos. Trans. R. Soc. B: Biol. Sci. 377, 20200496 (2022).
Begossi, A. & Caires, R. Art, fisheries and ethnobiology. J. Ethnobiol. Ethnomed. 11, 16 (2015).
Warren, D. R. et al. An interdisciplinary framework for evaluating 19th century landscape paintings for ecological research. Ecosphere 14, e4649 (2023).
Overduin-de Vries, A. M. O. & Smith, P. J. in Ichthyology in Context (1500–1880) (eds Smith, P. J. & Egmond, F.) 298–321 (Brill, 2023).
Hayashi, R. Past biodiversity: historical Japanese illustrations document the distribution of whales and their epibiotic barnacles. Ecol. Indic. 45, 687–691 (2014).
McClenachan, L. Documenting loss of large trophy fish from the Florida keys with historical photographs. Conserv. Biol. 23, 636–643 (2009).
De Frenne, P. et al. Using archived television video footage to quantify phenology responses to climate change. Methods Ecol. Evol. 9, 1874–1882 (2018).
Rohde, R. F. & Hoffman, M. T. The historical ecology of namibian rangelands: vegetation change since 1876 in response to local and global drivers. Sci. Total. Environ. 416, 276–288 (2012).
Morueta-Holme, N., Iversen, L. L., Corcoran, D., Rahbek, C. & Normand, S. Unlocking ground-based imagery for habitat mapping. Trends Ecol. Evol. 39, 349–358 (2023).
Sanseverino, M. E., Whitney, M. J. & Higgs, E. S. Exploring landscape change in mountain environments with the mountain legacy online image analysis toolkit. Mt. Res. Dev. 36, 407–416 (2016).
Munteanu, C. et al. Forest and agricultural land change in the Carpathian region—a meta-analysis of long-term patterns and drivers of change. Land. Use Policy 38, 685–697 (2014).
Loran, C., Haegi, S. & Ginzler, C. Comparing historical and contemporary maps—a methodological framework for a cartographic map comparison applied to Swiss maps. Int. J. Geogr. Inf. Sci. 32, 2123–2139 (2018).
Bergès, L. & Dupouey, J.-L. Historical ecology and ancient forests: progress, conservation issues and scientific prospects, with some examples from the French case. J. Veg. Sci. 32, e12846 (2021).
Wulder, M. A. et al. Fifty years of Landsat science and impacts. Remote. Sens. Environ. 280, 113195 (2022).
Munteanu, C. et al. The potential of historical spy-satellite imagery to support research in ecology and conservation. BioScience 74, 159–168 (2024).
Lišèák, V. Mapa mondi (Catalan Atlas of 1375), Majorcan cartographic school, and 14th century Asia. Proc. ICA 1, 1–8 (2018).
Goldberg, E., Kirby, K., Hall, J. & Latham, J. The ancient woodland concept as a practical conservation tool in Great Britain. J. Nat. Conserv. 15, 109–119 (2007).
Fuchs, R., Verburg, P. H., Clevers, J. G. P. W. & Herold, M. The potential of old maps and encyclopaedias for reconstructing historic European land cover/use change. Appl. Geogr. 59, 43–55 (2015).
Kaim, D. et al. Broad scale forest cover reconstruction from historical topographic maps. Appl. Geogr. 67, 39–48 (2016).
Lieskovský, J. et al. Historical land use dataset of the Carpathian region (1819–1980). J. Maps 14, 644–651 (2018).
Thorne, J. H. & Le, T. N. California’s historic legacy for landscape change, the Wieslander Vegetation Type Maps. Madroño 63, 293–328 (2016).
Walker, S. Cultural barriers to market integration: evidence from 19th century Austria. J. Comp. Econ. 46, 1122–1145 (2018).
Kaim, D., Szwagrzyk, M., Dobosz, M., Troll, M. & Ostafin, K. Mid-19th-century building structure locations in Galicia and Austrian Silesia under the Habsburg monarchy. Earth Syst. Sci. Data 13, 1693–1709 (2021).
Fretwell, P. T. et al. Using remote sensing to detect whale strandings in remote areas: the case of sei whales mass mortality in Chilean Patagonia. PLoS ONE 14, e0222498 (2019).
Padubidri, C., Kamilaris, A., Karatsiolis, S. & Kamminga, J. Counting sea lions and elephants from aerial photography using deep learning with density maps. Anim. Biotelemetry 9, 27 (2021).
Park, D. S. et al. Herbarium records provide reliable phenology estimates in the understudied tropics. J. Ecol. 111, 327–337 (2023).
Sanders, N. J., Cooper, N., Davis Rabosky, A. R. & Gibson, D. J. Leveraging natural history collections to understand the impacts of global change. J. Anim. Ecol. 92, 232–236 (2023).
Fortibuoni, T., Libralato, S., Raicevich, S., Giovanardi, O. & Solidoro, C. Coding early naturalists’ accounts into long-term fish community changes in the Adriatic Sea (1800–2000). PLoS ONE 5, e15502 (2010).
Egmond, F. C. in Ichthyology in Context (1500–1880) (eds Smith, P. J. & Egmond, F.) 147–243 (Brill, 2023).
Mullin, V. E. et al. First large-scale quantification study of DNA preservation in insects from natural history collections using genome-wide sequencing. Methods Ecol. Evol. 14, 360–371 (2023).
Forcina, G. et al. Introduced and extinct: neglected archival specimens shed new light on the historical biogeography of an iconic avian species in the Mediterranean. Integrative Zool. 19, 887–897 (2024).
Meineke, E. K., Davies, T. J., Daru, B. H. & Davis, C. C. Biological collections for understanding biodiversity in the Anthropocene. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20170386 (2018).
Lang, P. L. M., Willems, F. M., Scheepens, J. F., Burbano, H. A. & Bossdorf, O. Using herbaria to study global environmental change. N. Phytol. 221, 110–122 (2019).
Law, W. & Salick, J. Human-induced dwarfing of Himalayan snow lotus, Saussurea laniceps (Asteraceae). Proc. Natl Acad. Sci. USA 102, 10218–10220 (2005).
Gotelli, N. J. et al. Estimating species relative abundances from museum records. Methods Ecol. Evol. 14, 431–443 (2023).
Bartomeus, I., Stavert, J. R., Ward, D. & Aguado, O. Historical collections as a tool for assessing the global pollination crisis. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20170389 (2018).
Rakosy, D., Ashman, T.-L., Zoller, L., Stanley, A. & Knight, T. M. Integration of historic collections can shed light on patterns of change in plant–pollinator interactions and pollination service. Funct. Ecol. 37, 218–233 (2023).
Saporiti, F. et al. Longer and less overlapping food webs in anthropogenically disturbed marine ecosystems: confirmations from the past. PLoS ONE 9, e103132 (2014).
Morueta-Holme, N. et al. Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc. Natl Acad. Sci. USA 112, 12741–12745 (2015).
Smith, A. B. et al. Evaluation of species distribution models by resampling of sites surveyed a century ago by Joseph Grinnell. Ecography 36, 1017–1031 (2013).
Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).
Vild, O. et al. Long-term shift towards shady and nutrient-rich habitats in Central European temperate forests. N. Phytol. 242, 1018–1028 (2024).
Abzhanov, A. Darwin’s Galápagos finches in modern biology. Philos. Trans. R. Soc. B: Biol. Sci. 365, 1001–1007 (2010).
Hortal, J., Diniz-Filho, J. A. F., Low, M. E. Y., Stigall, A. L. & Yeo, D. C. J. Alfred Russel Wallace’s legacy: an interdisciplinary conception of evolution in space and time. NPJ Biodivers. 2, 1–3 (2023).
Smol, J. P. et al. (eds.). Tracking Environmental Change Using Lake Sediments: Terrestrial, Algal, and Siliceous Indicators Vol. 3 (Springer Netherlands, 2001).
Brewer, S., Jackson, S. T. & Williams, J. W. Paleoecoinformatics: applying geohistorical data to ecological questions. Trends Ecol. Evol. 27, 104–112 (2012).
Leunda, M. et al. Ice cave reveals environmental forcing of long-term Pyrenean tree line dynamics. J. Ecol. 107, 814–828 (2019).
González-Sampériz, P. et al. Strong continentality and effective moisture drove unforeseen vegetation dynamics since the last interglacial at inland Mediterranean areas: the Villarquemado sequence in NE Iberia. Quat. Sci. Rev. 242, 106425 (2020).
Ellegaard, M. et al. Dead or alive: sediment DNA archives as tools for tracking aquatic evolution and adaptation. Commun. Biol. 3, 1–11 (2020).
Fairchild, I. J. & Baker, A. Speleothem Science: From Process to Past Environments (Wiley, 2012).
Chase, B. M. et al. Rock hyrax middens: a palaeoenvironmental archive for southern African drylands. Quat. Sci. Rev. 56, 107–125 (2012).
Moore, G., Tessler, M., Cunningham, S. W., Betancourt, J. & Harbert, R. Paleo-metagenomics of North American fossil packrat middens: past biodiversity revealed by ancient DNA. Ecol. Evol. 10, 2530–2544 (2020).
Campbell, J. W., Waters, M. N. & Rich, F. Guano core evidence of palaeoenvironmental change and Woodland Indian inhabitance in Fern Cave, Alabama, USA, from the mid-Holocene to present. Boreas 46, 462–469 (2017).
Cook, E. R. et al. Megadroughts in North America: placing IPCC projections of hydroclimatic change in a long-term palaeoclimate context. J. Quat. Sci. 25, 48–61 (2010).
Hoffman, K. M., Lertzman, K. P. & Starzomski, B. M. Ecological legacies of anthropogenic burning in a British Columbia coastal temperate rain forest. J. Biogeogr. 44, 2903–2915 (2017).
Greiser, C. & Joosten, H. Archive value: measuring the palaeo-information content of peatlands in a conservation and compensation perspective. Int. J. Biodivers. Science, Ecosyst. Serv. Manag. 14, 209–220 (2018).
Prentice, I. C. Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. Quat. Res. 23, 76–86 (1985).
Vleminckx, J. et al. Soil charcoal to assess the impacts of past human disturbances on tropical forests. PLoS ONE 9, e108121 (2014).
Orsini, L. et al. The evolutionary time machine: using dormant propagules to forecast how populations can adapt to changing environments. Trends Ecol. Evol. 28, 274–282 (2013).
Sandom, C. J., Ejrnæs, R., Hansen, M. D. D. & Svenning, J.-C. High herbivore density associated with vegetation diversity in interglacial ecosystems. Proc. Natl Acad. Sci. USA 111, 4162–4167 (2014).
Parducci, L. et al. Ancient plant DNA in lake sediments. N. Phytol. 214, 924–942 (2017).
Capo, E. et al. Lake sedimentary DNA research on past terrestrial and aquatic biodiversity: overview and recommendations. Quaternary 4, 6 (2021).
Anderson, N. J. Landscape disturbance and lake response: temporal and spatial perspectives. Frer 7, 77–120 (2014).
Pearce, E. A. et al. Substantial light woodland and open vegetation characterized the temperate forest biome before Homo sapiens. Sci. Adv. 9, eadi9135 (2023).
Izdebski, A. et al. Palaeoecological data indicates land-use changes across Europe linked to spatial heterogeneity in mortality during the Black Death pandemic. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01652-4 (2022).
Nikulina, A. et al. Hunter-gatherer impact on European interglacial vegetation: a modelling approach. Quat. Sci. Rev. 324, 108439 (2024).
Pearce, E. A. et al. Drivers of vegetation structure differ between proposed natural reference conditions for temperate Europe. Glob. Ecol. Biogeogr. 34, e70020 (2025).
Karitter, P. et al. Combining the resurrection approach with transplant experiments to investigate adaptation of plant populations to environmental change. Perspect. Plant. Ecol., Evol. Syst. 62, 125773 (2024).
Wersebe, M. J. & Weider, L. J. Resurrection genomics provides molecular and phenotypic evidence of rapid adaptation to salinization in a keystone aquatic species. Proc. Natl Acad. Sci. USA 120, e2217276120 (2023).
Jackson, S. T. & Blois, J. L. Community ecology in a changing environment: perspectives from the quaternary. Proc. Natl Acad. Sci. USA 112, 4915–4921 (2015).
Rapacciuolo, G. & Blois, J. L. Understanding ecological change across large spatial, temporal and taxonomic scales: integrating data and methods in light of theory. Ecography 42, 1247–1266 (2019).
Bayraktarov, E. et al. Do big unstructured biodiversity data mean more knowledge? Front. Ecol. Evol. 6, 239 (2019).
Hughes, A. C. et al. Sampling biases shape our view of the natural world. Ecography 44, 1259–1269 (2021).
Callaghan, C. T., Poore, A. G. B., Hofmann, M., Roberts, C. J. & Pereira, H. M. Large-bodied birds are over-represented in unstructured citizen science data. Sci. Rep. 11, 19073 (2021).
Lotze, H. K. et al. in Shifting Baselines: The Past and the Future of Ocean Fisheries (eds Jackson, J. B. C., Alexander, K. E. & Sala, E.) 137–161 (Island Press/Center for Resource Economics, 2011).
McClenachan, L. et al. Global research priorities for historical ecology to inform conservation. Endanger. Species Res. 54, 285–310 (2024).
Fairhead, J. & Leach, M. in Misreading the African Landscape: Society and Ecology in a Forest-Savanna Mosaic (eds Fairhead, J. & Leach, M.) 55–85 (Cambridge Univ. Press, 1996).
Pluskowski, A., Brown, A. & Seetah, K. The challenges and future of environmental archaeology in Mauritius. Int. J. Histor. Archaeol. https://doi.org/10.1007/s10761-023-00727-1 (2024).
Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, eaah4787 (2017).
Kittinger, J. N. et al. Historical reconstruction reveals recovery in Hawaiian coral reefs. PLoS ONE 6, e25460 (2011).
Gil-Romera, G., Lamb, H. F., Turton, D., Sevilla-Callejo, M. & Umer, M. Long-term resilience, bush encroachment patterns and local knowledge in a Northeast African savanna. Glob. Environ. Change 20, 612–626 (2010).
Clavero, M. Shifting baselines and the conservation of non-native species. Conserv. Biol. 28, 1434–1436 (2014).
Clavero, M., Nores, C., Kubersky-Piredda, S. & Centeno-Cuadros, A. Interdisciplinarity to reconstruct historical introductions: solving the status of cryptogenic crayfish. Biol. Rev. 91, 1036–1049 (2016).
Szabó, P. et al. Trends and events through seven centuries: the history of a wetland landscape in the Czech Republic. Reg. Env. Change 17, 501–514 (2017).
Li, B., Pan, R. & Oxnard, C. E. Extinction of snub-nosed monkeys in China during the past 400 years. Int. J. Primatol. 23, 1227–1244 (2002).
Early-Capistrán, M.-M. et al. Reconstructing 290 years of a data-poor fishery through ethnographic and archival research: the East Pacific green turtle (Chelonia mydas) in Baja California, Mexico. Fish. Fish. 19, 57–77 (2018).
Nelson, G. & Ellis, S. The history and impact of digitization and digital data mobilization on biodiversity research. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20170391 (2018).
Nowak, M. M., Słupecka, K. & Jackowiak, B. Geotagging of natural history collections for reuse in environmental research. Ecol. Indic. 131, 108131 (2021).
Chytrý, M. et al. European Vegetation Archive (EVA): an integrated database of European vegetation plots. Appl. Veg. Sci. 19, 173–180 (2016).
Knollová, I. et al. ReSurveyEurope: a database of resurveyed vegetation plots in Europe. J. Veg. Sci. 35, e13235 (2024).
Williams, J. W. et al. The Neotoma Paleoecology Database, a multiproxy, international, community-curated data resource. Quat. Res. 89, 156–177 (2018).
Szabó, P. et al. More than trees: the challenges of creating a geodatabase to capture the complexity of forest history. Hist. Methods: A J. Quant. Interdiscip. Hist. 51, 175–189 (2018).
Wilson, R. J. et al. Applying computer vision to digitised natural history collections for climate change research: temperature-size responses in British butterflies. Methods Ecol. Evol. 14, 372–384 (2023).
Weeks, B. C. et al. A deep neural network for high-throughput measurement of functional traits on museum skeletal specimens. Methods Ecol. Evol. 14, 347–359 (2023).
von Allmen, R. et al. Method development and application of object detection and classification to Quaternary fossil pollen sequences. Quat. Sci. Rev. 327, 108521 (2024).
Dunker, S. et al. Pollen analysis using multispectral imaging flow cytometry and deep learning. N. Phytol. 229, 593–606 (2021).
Nita, M. D., Munteanu, C., Gutman, G., Abrudan, I. V. & Radeloff, V. C. Widespread forest cutting in the aftermath of World War II captured by broad-scale historical Corona spy satellite photography. Remote. Sens. Environ. 204, 322–332 (2018).
Kirillov, A. et al. Segment anything. In Proc. IEEE/CVF International Conf. on Computer Vision (ICCV), 4015–4026 (2023).
Tricker, J. et al. Assessing the accuracy of georeferenced landcover data derived from oblique imagery using machine learning. Remote. Sens. Ecol. Conserv. 10, 401–415 (2024).
Bugeja, M., Dingli, A. & Seychell, D. in Rediscovering Heritage Through Technology: A Collection of Innovative Research Case Studies That Are Reworking The Way We Experience Heritage (eds. Seychell, D. & Dingli, A.) 3–23 (Springer International, 2020).
Muehlberger, G. et al. Transforming scholarship in the archives through handwritten text recognition: Transkribus as a case study. J. Doc. 75, 954–976 (2019).
Suissa, O., Elmalech, A. & Zhitomirsky-Geffet, M. Text analysis using deep neural networks in digital humanities and information science. J. Assoc. Inf. Sci. Technol. 73, 268–287 (2022).
Santana-Cordero, A. M. & Szabó, P. Exploring qualitative methods of historical ecology and their links with qualitative research. Int. J. Qual. Methods 18, 1609406919872112 (2019).
Sun, J. et al. Automatic identification and morphological comparison of bivalve and brachiopod fossils based on deep learning. PeerJ. 11, e16200 (2023).
Wei, G., Peng, C., Zhu, Q., Zhou, X. & Yang, B. Application of machine learning methods for paleoclimatic reconstructions from leaf traits. Int. J. Climatol. 41, E3249–E3262 (2021).
Bledsoe, E. K. et al. Data rescue: saving environmental data from extinction. Proc. R. Soc. B: Biol. Sci. 289, 20220938 (2022).
Knockaert, C. et al. Biodiversity data rescue in the framework of a long-term Kenya–Belgium cooperation in marine sciences. Sci. Data 6, 85 (2019).
Rosi, E. J. et al. Give long-term datasets world heritage status. Science 378, 1180–1181 (2022).
Purgar, M., Glasziou, P., Klanjscek, T., Nakagawa, S. & Culina, A. Supporting study registration to reduce research waste. Nat. Ecol. Evol. 8, 1391–1399 (2024).
Scott, S. L. et al. Documenting changing landscapes with rePhotoSA: a repeat photography and citizen science project in Southern Africa. Ecol. Inform. 64, 101390 (2021).
Flowers, V., Frutos, C., MacKenzie, A. S., Fanning, R. & Fraser, E. E. Snap decisions: assessing participation and data quality in a citizen science program using repeat photography. Citizen Sci. Theory Practice 8, 62 (2023).
Soul, L. C., Barclay, R. S., Bolton, A. & Wing, S. L. Fossil atmospheres: a case study of citizen science in question-driven palaeontological research. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20170388 (2018).
Froese, G. Z. L. et al. Coupling paraecology and hunter GPS self-follows to quantify village bushmeat hunting dynamics across the landscape scale. Afr. J. Ecol. 60, 229–249 (2022).
Tribot, A.-S., Faget, D., Richard, T. & Changeux, T. The role of pre-19th century art in conservation biology: an untapped potential for connecting with nature. Biol. Conserv. 276, 109791 (2022).
Wieczorek, J. et al. Darwin Core: an evolving community-developed biodiversity data standard. PLoS ONE 7, e29715 (2012).
Guralnick, R., Walls, R. & Jetz, W. Humboldt Core—toward a standardized capture of biological inventories for biodiversity monitoring, modeling and assessment. Ecography 40, 001–012 (2017).
Nieto-Lugilde, D. et al. Time to better integrate paleoecological research infrastructures with neoecology to improve understanding of biodiversity long-term dynamics and to inform future conservation. Environ. Res. Lett. 16, 095005 (2021).
Tengö, M. et al. Weaving knowledge systems in IPBES, CBD and beyond—lessons learned for sustainability. Curr. Opin. Environ. Sustain. 26–27, 17–25 (2017).
Davis, A. & Wagner, J. R. Who knows? On the importance of identifying “experts” when researching local ecological knowledge. Hum. Ecol. 31, 463–489 (2003).
Liboiron, M. Decolonizing geoscience requires more than equity and inclusion. Nat. Geosci. 14, 876–877 (2021).
Swanson, H. A. et al. History as grounds for interdisciplinarity: promoting sustainable woodlands via an integrative ecological and socio-cultural perspective. One Earth 4, 226–237 (2021).
Svenning, J.-C., Kerr, M. R., Mungi, N. A., Ordonez, A. & Riede, F. Defining the anthropocene as a geological epoch captures human impacts’ triphasic nature to empower science and action. One Earth 7, 1678–1681 (2024).
Navarro, L. M. et al. Monitoring biodiversity change through effective global coordination. Curr. Opin. Environ. Sustain. 29, 158–169 (2017).
Perino, A. et al. Biodiversity post-2020: closing the gap between global targets and national-level implementation. Conserv. Lett. 15, e12848 (2022).
Gwinn, N. E. & Rinaldo, C. The Biodiversity Heritage Library: sharing biodiversity literature with the world. IFLA J. 35, 25–34 (2009).
Domínguez-Castro, F. et al. Dating historical droughts from religious ceremonies, the international pro pluvia rogation database. Sci. Data 8, 186 (2021).
Buckland, P. I. SEAD – the Strategic Environmental Archaeology Database inter-linking multiproxy environmental data with archaeological investigations and ecology. In Archaeology in the Digital Era: Papers from the 40th Annual Conference of Computer Applications and Quantitative Methods in Archaeology (CAA), Southampton, 26-29 March 2012 (eds Chrysanthi, A. et al.) 320–331 (Amsterdam Univ. Press, 2014).
Guiterman, C. H. et al. The International Tree-Ring Data Bank at fifty: status of stewardship for future scientific discovery. Tree-Ring Res. 80, 13–18 (2024).
Lawenda, M., Wiland-Szymańska, J., Nowak, M. M., Jędrasiak, D. & Jackowiak, B. The Adam Mickiewicz University Nature Collections IT system (AMUNATCOLL): metadata structure, database and operational procedures. Biodivers. Res. Conserv. 65, 35–48 (2022).
Anderson, N. J. et al. Limnological and palaeolimnological studies of lakes in south-western Greenland. Geol. Greenl. Surv. Bull. 183, 68–74 (1999).
Forman, R. T. T. & Russell, E. W. B. Evaluation of historical data in ecology. Bull. Ecol. Soc. Am. 64, 5–7 (1983).
Reithmaier, T. in The Historical Ecology Handbook (eds Egan, D. & Howell, E. A.) 121–146 (Island Press, 2001).
Kaim, D. Land cover changes in the Polish Carpathians based on repeat photography. Carpath. J. Earth Environ. Sci. 12, 485–498 (2017).
Clavero, M., García-Reyes, A., Fernández-Gil, A., Revilla, E. & Fernández, N. On the misuse of historical data to set conservation baselines: wolves in Spain as an example. Biol. Conserv. 276, 109810 (2022).