Yang, C. N. in Selected Papers of Chen Ning Yang II, 78–92 (World Scientific, 2013).

Aidelsburger, M., Nascimbene, S. & Goldman, N. Artificial gauge fields in materials and engineered systems. C. R. Phys. 19, 394–432 (2018).

Article 
ADS 

Google Scholar
 

Aharonov, Y. & Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959).

Article 
ADS 
MathSciNet 

Google Scholar
 

Wu, T. T. & Yang, C. N. Concept of nonintegrable phase factors and global formulation of gauge fields. Phys. Rev. D 12, 3845–3857 (1975).

Article 
ADS 
MathSciNet 

Google Scholar
 

Madison, K. W., Chevy, F., Wohlleben, W. & Dalibard, J. Vortex formation in a stirred Bose–Einstein condensate. Phys. Rev. Lett. 84, 806–809 (2000).

Article 
ADS 

Google Scholar
 

Lin, Y. J., Compton, R. L., Jiménez-García, K., Porto, J. V. & Spielman, I. B. Synthetic magnetic fields for ultracold neutral atoms. Nature 462, 628–632 (2009).

Article 
ADS 

Google Scholar
 

Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photon. 6, 782–787 (2012).

Article 
ADS 

Google Scholar
 

Rechtsman, M. C. et al. Photonic floquet topological insulators. Nature 496, 196–200 (2013). Experimental realizations of photonic Floquet topological insulators.

Article 
ADS 

Google Scholar
 

Fang, K. J. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465–471 (2017).

Article 

Google Scholar
 

Süsstrunk, R. & Huber, S. D. Observation of phononic helical edge states in a mechanical topological insulator. Science 349, 47–50 (2015).

Article 
ADS 

Google Scholar
 

Xiao, M., Chen, W.-J., He, W.-Y. & Chan, C. T. Synthetic gauge flux and Weyl points in acoustic systems. Nat. Phys. 11, 920–924 (2015).

Article 

Google Scholar
 

Lee, C. H. et al. Topolectrical circuits. Commun. Phys. 1, 39 (2018).

Article 

Google Scholar
 

Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006). Introducing the concept of transformation optics, providing a blueprint for designing materials that can precisely control the path of electromagnetic fields.

Article 
ADS 
MathSciNet 

Google Scholar
 

Miri, M. A., Heinrich, M., El-Ganainy, R. & Christodoulides, D. N. Supersymmetric optical structures. Phys. Rev. Lett. 110, 233902 (2013).

Article 
ADS 

Google Scholar
 

Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

Article 
ADS 

Google Scholar
 

Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019). Comprehensive review of recent advances in topological photonics.

Article 
ADS 
MathSciNet 

Google Scholar
 

Zhang, X., Zangeneh-Nejad, F., Chen, Z.-G., Lu, M.-H. & Christensen, J. A second wave of topological phenomena in photonics and acoustics. Nature 618, 687–697 (2023).

Article 
ADS 

Google Scholar
 

Yang, Y. et al. Non-Abelian physics in light and sound. Science 383, 844 (2024).

Article 
MathSciNet 

Google Scholar
 

Feng, L., El-Ganainy, R. & Ge, L. Non-Hermitian photonics based on parity–time symmetry. Nat. Photon. 11, 752–762 (2017).

Article 
ADS 

Google Scholar
 

El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).

Article 

Google Scholar
 

Özdemir, S. K., Rotter, S., Nori, F. & Yang, L. Parity–time symmetry and exceptional points in photonics. Nat. Mater. 18, 783–798 (2019).

Article 
ADS 

Google Scholar
 

Miri, M.-A. & Alù, A. Exceptional points in optics and photonics. Science 363, eaar7709 (2019).

Article 
MathSciNet 

Google Scholar
 

Yao, S. Y. & Wang, Z. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett. 121, 086803 (2018). Extension of topological band theory to non-Hermitian system.

Article 
ADS 

Google Scholar
 

Zhang, X., Zhang, T., Lu, M.-H. & Chen, Y.-F. A review on non-Hermitian skin effect. Adv. Phys.: X 7, 2109431 (2022).


Google Scholar
 

Clark, L. W., Schine, N., Baum, C., Jia, N. Y. & Simon, J. Observation of Laughlin states made of light. Nature 582, 41–45 (2020).

Article 
ADS 

Google Scholar
 

Deng, J. F. et al. Observing the quantum topology of light. Science 378, 966–971 (2022). Experimental observation of quantum topological properties of light.

Article 
ADS 

Google Scholar
 

Huang, K. Fundamental Forces of Nature: The Story of Gauge Fields (World Scientific, 2007).

Bloch, F. Uber die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys. A 52, 555–600 (1928).

Article 

Google Scholar
 

Zener, C. A theory of the electrical breakdown of solid dielectrics. Proc. R. Soc. Lond. A 145, 523–529 (1934).

Article 
ADS 

Google Scholar
 

Peschel, U., Pertsch, T. & Lederer, F. Optical Bloch oscillations in waveguide arrays. Opt. Lett. 23, 1701–1703 (1998).

Article 
ADS 

Google Scholar
 

Block, A. et al. Bloch oscillations in plasmonic waveguide arrays. Nat. Commun. 5, 3843 (2014).

Article 
ADS 

Google Scholar
 

Liu, W., Neshev, D. N., Miroshnichenko, A. E., Shadrivov, I. V. & Kivshar, Y. S. Bouncing plasmonic waves in half-parabolic potentials. Phys. Rev. A 84, 063805 (2011).

Article 
ADS 

Google Scholar
 

Levy, U. et al. Inhomogenous dielectric metamaterials with space-variant polarizability. Phys. Rev. Lett. 98, 243901 (2007).

Article 
ADS 

Google Scholar
 

Staliunas, K. & Masoller, C. Subdiffractive light in bi-periodic arrays of modulated fibers. Opt. Express 14, 10669–10677 (2006).

Article 
ADS 

Google Scholar
 

Pyrialakos, G. G. et al. Bimorphic Floquet topological insulators. Nat. Mater. 21, 634–639 (2022).

Article 
ADS 

Google Scholar
 

Hwang, M.-S., Kim, H.-R. & Park, H.-G. Topological manipulation for advancing nanophotonics. npj Nanophoton. 1, 32 (2024).

Article 

Google Scholar
 

Peterson, C. W. et al. Trapped fractional charges at bulk defects in topological insulators. Nature 589, 376–380 (2021).

Article 
ADS 

Google Scholar
 

Liu, Y. et al. Bulk-disclination correspondence in topological crystalline insulators. Nature 589, 381–385 (2021).

Article 
ADS 

Google Scholar
 

Hu, Z. et al. Topological orbital angular momentum extraction and twofold protection of vortex transport. Nat. Photon. 19, 162–169 (2025).

Article 
ADS 

Google Scholar
 

Yang, Z., Lustig, E., Lumer, Y. & Segev, M. Photonic Floquet topological insulators in a fractal lattice. Light Sci. Appl. 9, 128 (2020).

Article 
ADS 

Google Scholar
 

Biesenthal, T. et al. Fractal photonic topological insulators. Science 376, 1114–1119 (2022).

Article 
ADS 

Google Scholar
 

Miri, M. A., Heinrich, M. & Christodoulides, D. N. SUSY-inspired one-dimensional transformation optics. Optica 1, 89–95 (2014).

Article 
ADS 

Google Scholar
 

Yim, J. et al. Broadband continuous supersymmetric transformation: a new paradigm for transformation optics. eLight 2, 16 (2022).

Article 

Google Scholar
 

Hokmabadi, M. P., Nye, N. S., El-Ganainy, R., Christodoulides, D. N. & Khajavikhan, M. Supersymmetric laser arrays. Science 363, 623–626 (2019).

Article 
ADS 

Google Scholar
 

Heinrich, M. et al. Supersymmetric mode converters. Nat. Commun. 5, 3698 (2014).

Article 
ADS 

Google Scholar
 

Liu, X. et al. Perfect excitation of topological states by supersymmetric waveguides. Phys. Rev. Lett. 132, 016601 (2024).

Article 
ADS 

Google Scholar
 

Vonklitzing, K., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

Article 
ADS 

Google Scholar
 

Onoda, M., Murakami, S. & Nagaosa, N. Hall effect of light. Phys. Rev. Lett. 93, 083901 (2004).

Article 
ADS 

Google Scholar
 

Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

Article 
ADS 

Google Scholar
 

Wang, Z., Chong, Y. D., Joannopoulos, J. D. & Soljacic, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

Article 
ADS 

Google Scholar
 

Rechtsman, M. C. et al. Strain induced pseudomagnetic field and photonic Landau levels in dielectric structures. Nat. Photon. 7, 153–158 (2013).

Article 
ADS 

Google Scholar
 

Yang, Z., Gao, F., Yang, Y. & Zhang, B. Strain-induced gauge field and Landau levels in acoustic structures. Phys. Rev. Lett. 118, 194301 (2017).

Article 
ADS 

Google Scholar
 

Huang, Z. T. et al. Pattern-tunable synthetic gauge fields in topological photonic graphene. Nanophotonics 11, 1297–1308 (2022).

Article 

Google Scholar
 

Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).

Article 
ADS 

Google Scholar
 

Wu, L. H. & Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015).

Article 
ADS 

Google Scholar
 

Dong, J. W., Chen, X. D., Zhu, H. Y., Wang, Y. & Zhang, X. Valley photonic crystals for control of spin and topology. Nat. Mater. 16, 298–302 (2017).

Article 
ADS 

Google Scholar
 

Gao, F. et al. Topologically protected refraction of robust kink states in valley photonic crystals. Nat. Phys. 14, 140–144 (2018).

Article 

Google Scholar
 

Fang, K., Yu, Z. & Fan, S. Photonic Aharonov–Bohm effect based on dynamic modulation. Phys. Rev. Lett. 108, 153901 (2012).

Article 
ADS 

Google Scholar
 

Luo, H. K. et al. Guiding Trojan light beams via Lagrange points. Nat. Phys. 20, 95–100 (2024).

Article 

Google Scholar
 

Celi, A. et al. Synthetic gauge fields in synthetic dimensions. Phys. Rev. Lett. 112, 043001 (2014).

Article 
ADS 

Google Scholar
 

Yu, D. et al. Comprehensive review on developments of synthetic dimensions. Photon. Insights 4, R06–R06 (2025).

Article 

Google Scholar
 

Yuan, L., Shi, Y. & Fan, S. Photonic gauge potential in a system with a synthetic frequency dimension. Opt. Lett. 41, 741 (2016).

Article 
ADS 

Google Scholar
 

Lustig, E. et al. Photonic topological insulator in synthetic dimensions. Nature 567, 356–360 (2019).

Article 
ADS 

Google Scholar
 

Wimmer, M., Price, H. M., Carusotto, I. & Peschel, U. Experimental measurement of the Berry curvature from anomalous transport. Nat. Phys. 13, 545–550 (2017).

Article 

Google Scholar
 

Luo, X. W. et al. Synthetic lattice enabled all-optical devices based on orbital angular momentum of light. Nat. Commun. 8, 16097 (2017).

Article 
ADS 

Google Scholar
 

Dutt, A. et al. A single photonic cavity with two independent physical synthetic dimensions. Science 367, 59–64 (2020). Exploration of higher-dimensional physics using synthetic dimensions.

Article 
ADS 

Google Scholar
 

Citro, R. & Aidelsburger, M. Thouless pumping and topology. Nat. Rev. Phys. 5, 87–101 (2023).

Article 

Google Scholar
 

Zilberberg, O. et al. Photonic topological boundary pumping as a probe of 4D quantum Hall physics. Nature 553, 59–62 (2018).

Article 
ADS 

Google Scholar
 

Wang, Q., Xiao, M., Liu, H., Zhu, S. N. & Chan, C. T. Optical interface states protected by synthetic Weyl points. Phys. Rev. X 7, 031032 (2017).


Google Scholar
 

Song, W. et al. Bound-extended mode transition in type-II synthetic photonic Weyl heterostructures. Phys. Rev. Lett. 132, 143801 (2024).

Article 
ADS 

Google Scholar
 

Ozawa, T., Price, H. M., Goldman, N., Zilberberg, O. & Carusotto, I. Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics. Phys. Rev. A 93, 043827 (2016).

Article 
ADS 

Google Scholar
 

Ma, S. et al. Linked Weyl surfaces and Weyl arcs in photonic metamaterials. Science 373, 572–576 (2021).

Article 
ADS 

Google Scholar
 

Yang, Y. et al. Demonstration of negative refraction induced by synthetic gauge fields. Sci. Adv. 7, eabj2062 (2021).

Article 
ADS 

Google Scholar
 

Lumer, Y. et al. Light guiding by artificial gauge fields. Nat. Photon. 13, 339–345 (2019). Illustrating how artificial gauge fields can be used to control light in photonic structures.

Article 
ADS 

Google Scholar
 

Pilozzi, L., Leykam, D., Chen, Z. & Conti, C. Topological photonic crystal fibers and ring resonators. Opt. Lett. 45, 1415–1418 (2020).

Article 
ADS 

Google Scholar
 

Zhu, B. et al. Topological photonic crystal fibre. Preprint at https://arxiv.org/abs/2501.15107 (2025).

Niu, Q. et al. Realization of a Dirac-vortex topological photonic crystal fiber. Preprint at https://arxiv.org/abs/2503.04194 (2025).

Song, W. et al. Subwavelength self-imaging in cascaded waveguide arrays. Adv. Photon. 2, 036001 (2020).

Article 
ADS 

Google Scholar
 

Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000).

Article 
ADS 

Google Scholar
 

Ye, H. et al. Reconfigurable refraction manipulation at synthetic temporal interfaces with scalar and vector gauge potentials. Proc. Natl Acad. Sci. USA 120, e2300860120 (2023).

Article 
MathSciNet 

Google Scholar
 

Wang, S. L. et al. High-order dynamic localization and tunable temporal cloaking in ac-electric-field driven synthetic lattices. Nat. Commun. 13, 7653 (2022).

Article 
ADS 

Google Scholar
 

Wang, S. et al. Photonic Floquet Landau–Zener tunneling and temporal beam splitters. Sci. Adv. 9, eadh0415 (2023).

Article 

Google Scholar
 

Yang, Y. et al. Synthesis and observation of non-Abelian gauge fields in real space. Science 365, 1021–1025 (2019). Realizing the synthesis and observation of non-Abelian gauge fields in real space.

Article 
ADS 
MathSciNet 

Google Scholar
 

Arnold, V. Lectures and Problems: A Gift to Young Mathematicians (American Math Society (translated from Russian), 2015).

Yang, C. N. & Mills, R. L. Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96, 191–195 (1954).

Article 
ADS 
MathSciNet 

Google Scholar
 

Chen, Y. et al. Non-Abelian gauge field optics. Nat. Commun. 10, 3125 (2019).

Article 
ADS 

Google Scholar
 

Polimeno, L. et al. Experimental investigation of a non-Abelian gauge field in 2D perovskite photonic platform. Optica 8, 1442–1447 (2021).

Article 
ADS 

Google Scholar
 

Lovett, S. et al. Observation of Zitterbewegung in photonic microcavities. Light Sci. Appl. 12, 126 (2023).

Article 
ADS 

Google Scholar
 

Ye, W. et al. Photonic Hall effect and helical Zitterbewegung in a synthetic Weyl system. Light Sci. Appl. 8, 49 (2019).

Article 
ADS 

Google Scholar
 

Wu, J. et al. Non-Abelian gauge fields in circuit systems. Nat. Electron. 5, 635–642 (2022).

Article 

Google Scholar
 

Terças, H., Flayac, H., Solnyshkov, D. D. & Malpuech, G. Non-Abelian gauge fields in photonic cavities and photonic superfluids. Phys. Rev. Lett. 112, 066402 (2014).

Article 
ADS 

Google Scholar
 

Whittaker, C. E. et al. Optical analogue of Dresselhaus spin–orbit interaction in photonic graphene. Nat. Photon. 15, 193–196 (2021).

Article 
ADS 

Google Scholar
 

Brosco, V., Pilozzi, L., Fazio, R. & Conti, C. Non-Abelian Thouless pumping in a photonic lattice. Phys. Rev. A 103, 063518 (2021).

Article 
ADS 
MathSciNet 

Google Scholar
 

Yan, Q. et al. Non-Abelian gauge field in optics. Adv. Opt. Photon. 15, 907–976 (2023).

Article 

Google Scholar
 

Cheng, D. L., Wang, K. & Fan, S. H. Artificial non-Abelian lattice gauge fields for photons in the synthetic frequency dimension. Phys. Rev. Lett. 130, 083601 (2023).

Article 
ADS 
MathSciNet 

Google Scholar
 

Cheng, D. et al. Non-Abelian lattice gauge fields in photonic synthetic frequency dimensions. Nature 637, 52–56 (2025).

Article 
ADS 

Google Scholar
 

Wong, B. T. T., Yang, S., Pang, Z. & Yang, Y. Synthetic non-Abelian electric fields and spin–orbit coupling in photonic synthetic dimensions. Phys. Rev. Lett. 134, 163803 (2025).

Article 
ADS 
MathSciNet 

Google Scholar
 

Dong, Z. et al. Temporal multilayer structures in discrete physical systems towards arbitrary-dimensional non-Abelian Aharonov–Bohm interferences. Nat. Commun. 15, 7392 (2024).

Article 
ADS 

Google Scholar
 

Pang, Z., Abdelghani, O., Soljačić, M. & Yang, Y. Topological quantum walk in synthetic non-Abelian gauge fields. Preprint at https://arxiv.org/abs/2412.03043 (2024).

Pancharatnam, S. The propagation of light in absorbing biaxial crystals. Proc. Indian Acad. Sci. A 42, 86–109 (1955).

Article 

Google Scholar
 

Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243 (1998).

Article 
ADS 
MathSciNet 

Google Scholar
 

Li, A. D. et al. Exceptional points and non-Hermitian photonics at the nanoscale. Nat. Nanotechnol. 18, 706–720 (2023).

Article 
ADS 

Google Scholar
 

Ding, K., Fang, C. & Ma, G. C. Non-Hermitian topology and exceptional-point geometries. Nat. Rev. Phys. 4, 745–760 (2022).

Article 

Google Scholar
 

Wang, C. Q. et al. Non-Hermitian optics and photonics: from classical to quantum. Adv. Opt. Photon. 15, 442–523 (2023).

Article 

Google Scholar
 

Doppler, J. et al. Dynamically encircling an exceptional point for asymmetric mode switching. Nature 537, 76–79 (2016). Encircling an exceptional point for asymmetric mode switching.

Article 
ADS 

Google Scholar
 

Nasari, H. et al. Observation of chiral state transfer without encircling an exceptional point. Nature 605, 256–261 (2022).

Article 
ADS 

Google Scholar
 

Song, W. G. et al. Breakup and recovery of topological zero modes in finite non-Hermitian optical lattices. Phys. Rev. Lett. 123, 165701 (2019).

Article 
ADS 

Google Scholar
 

Li, A. D. et al. Hamiltonian hopping for efficient chiral mode switching in encircling exceptional points. Phys. Rev. Lett. 125, 187403 (2020).

Article 
ADS 

Google Scholar
 

Schumer, A. et al. Topological modes in a laser cavity through exceptional state transfer. Science 375, 884–888 (2022).

Article 
ADS 

Google Scholar
 

Zhen, B. et al. Spawning rings of exceptional points out of Dirac cones. Nature 525, 354–358 (2015).

Article 
ADS 

Google Scholar
 

Zhou, H. et al. Observation of bulk Fermi arc and polarization half charge from paired exceptional points. Science 359, 1009–1012 (2018).

Article 
ADS 
MathSciNet 

Google Scholar
 

Cerjan, A. et al. Experimental realization of a Weyl exceptional ring. Nat. Photon. 13, 623–628 (2019).

Article 
ADS 

Google Scholar
 

Song, W. et al. Observation of Weyl interface states in non-Hermitian synthetic photonic systems. Phys. Rev. Lett. 130, 043803 (2023).

Article 
ADS 

Google Scholar
 

Zhang, X., Ding, K., Zhou, X., Xu, J. & Jin, D. Experimental observation of an exceptional surface in synthetic dimensions with magnon polaritons. Phys. Rev. Lett. 123, 237202 (2019).

Article 
ADS 

Google Scholar
 

Hatano, N. & Nelson, D. R. Localization transitions in non-Hermitian quantum mechanics. Phys. Rev. Lett. 77, 570–573 (1996).

Article 
ADS 

Google Scholar
 

Sun, C.-P. High-order adiabatic approximation for non-Hermitian quantum system and complexification of Berry’s phase. Phys. Scr. 48, 393 (1993).

Article 
ADS 

Google Scholar
 

Longhi, S., Gatti, D. & Valle, G. D. Non-Hermitian transparency and one-way transport in low dimensional lattices by an imaginary gauge field. Phys. Rev. B 92, 094204 (2015).

Article 
ADS 

Google Scholar
 

Okuma, N., Kawabata, K., Shiozaki, K. & Sato, M. Topological origin of non-Hermitian skin effects. Phys. Rev. Lett. 124, 086801 (2020).

Article 
ADS 
MathSciNet 

Google Scholar
 

Zhang, K., Yang, Z. S. & Fang, C. Correspondence between winding numbers and skin modes in non-Hermitian systems. Phys. Rev. Lett. 125, 126402 (2020).

Article 
ADS 
MathSciNet 

Google Scholar
 

Borgnia, D. S., Kruchkov, A. J. & Slager, R. J. Non-Hermitian boundary modes and topology. Phys. Rev. Lett. 124, 056802 (2020).

Article 
ADS 
MathSciNet 

Google Scholar
 

Weidemann, S. et al. Topological funneling of light. Science 368, 311–314 (2020). Experimental realization of the non-Hermitian skin effect.

Article 
ADS 
MathSciNet 

Google Scholar
 

Xiao, L. et al. Non-Hermitian bulk boundary correspondence in quantum dynamics. Nat. Phys. 16, 761–766 (2020).

Article 

Google Scholar
 

Xin, H. R. et al. Manipulating the non-Hermitian skin effect in optical ring resonators. Phys. Rev. B 107, 165401 (2023).

Article 
ADS 

Google Scholar
 

Longhi, S. Non-Hermitian gauged topological laser arrays. Ann. Phys. 530, 1800023 (2018).

Article 
MathSciNet 

Google Scholar
 

Teo, W. X., Zhu, W. W. & Gong, J. B. Tunable two-dimensional laser arrays with zero-phase locking. Phys. Rev. B 105, L201402 (2022).

Article 
ADS 

Google Scholar
 

Liu, Y. G. N. et al. Complex skin modes in non-Hermitian coupled laser arrays. Light Sci. Appl. 11, 336 (2022).

Article 
ADS 

Google Scholar
 

Gao, Z. H. et al. Two dimensional reconfigurable non-Hermitian gauged laser array. Phys. Rev. Lett. 130, 263801 (2023).

Article 
ADS 

Google Scholar
 

Yi, Y. F. & Yang, Z. S. Non-Hermitian skin modes induced by on-site dissipations and chiral tunneling effect. Phys. Rev. Lett. 125, 186802 (2020).

Article 
ADS 
MathSciNet 

Google Scholar
 

Lin, Z. K., Ding, L., Ke, S. L. & Li, X. Steering non-Hermitian skin modes by synthetic gauge fields in optical ring resonators. Opt. Lett. 46, 3512–3515 (2021).

Article 
ADS 

Google Scholar
 

Li, Y., Lu, C., Zhang, S. & Liu, Y.-C. Loss-induced Floquet non-Hermitian skin effect. Phys. Rev. B 108, L220301 (2023).

Article 
ADS 

Google Scholar
 

Sun, Y. et al. Photonic Floquet skin-topological effect. Phys. Rev. Lett. 132, 063804 (2023).

Article 
ADS 

Google Scholar
 

Lin, Z. et al. Observation of topological transition in Floquet non-Hermitian skin effects in silicon photonics. Phys. Rev. Lett. 133, 073803 (2024).

Article 
ADS 

Google Scholar
 

Wang, K., Dutt, A., Wojcik, C. C. & Fan, S. Topological complex energy braiding of non-Hermitian bands. Nature 598, 59–64 (2021).

Article 
ADS 

Google Scholar
 

Patil, Y. S. S. et al. Measuring the knot of non-Hermitian degeneracies and non-commuting braids. Nature 607, 271–275 (2022).

Article 
ADS 

Google Scholar
 

Parto, M., Leefmans, C., Williams, J., Nori, F. & Marandi, A. Non-Abelian effects in dissipative photonic topological lattices. Nat. Commun. 14, 1440 (2023).

Article 
ADS 

Google Scholar
 

Pang, Z., Wong, B. T. T., Hu, J. & Yang, Y. Synthetic non-Abelian gauge fields for non-Hermitian systems. Phys. Rev. Lett. 132, 043804 (2024).

Article 
ADS 
MathSciNet 

Google Scholar
 

Shen, J. T. & Fan, S. H. Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system. Phys. Rev. Lett. 98, 153003 (2007).

Article 
ADS 

Google Scholar
 

Wang, C. et al. Realization of fractional quantum Hall state with interacting photons. Science 384, 579–584 (2024). Realizing the optical simulation of fractional quantum Hall physics.

Article 
ADS 
MathSciNet 

Google Scholar
 

Blais, A., Grimsmo, A. L., Girvin, S. M. & Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021).

Article 
ADS 
MathSciNet 

Google Scholar
 

Schine, N., Ryou, A., Gromov, A., Sommer, A. & Simon, J. Synthetic landau levels for photons. Nature 534, 671–675 (2016).

Article 
ADS 

Google Scholar
 

Corman, L. Light turned into exotic Laughlin matter. Nature 582, 37–38 (2020).

Article 
ADS 

Google Scholar
 

Lim, H. T., Togan, E., Kroner, M., Miguel-Sanchez, J. & Imamoglu, A. Electrically tunable artificial gauge potential for polaritons. Nat. Commun. 8, 14540 (2017).

Article 
ADS 

Google Scholar
 

Knüppel, P. et al. Nonlinear optics in the fractional quantum Hall regime. Nature 572, 91–94 (2019).

Article 
ADS 

Google Scholar
 

Ke, Y. G., Poshakinskiy, A. V., Lee, C. H., Kivshar, Y. S. & Poddubny, A. N. Inelastic scattering of photon pairs in qubit arrays with subradiant states. Phys. Rev. Lett. 123, 253601 (2019).

Article 
ADS 

Google Scholar
 

Ke, Y. G., Huang, J. X., Liu, W. J., Kivshar, Y. S. & Lee, C. H. Topological inverse band theory in waveguide quantum electrodynamics. Phys. Rev. Lett. 131, 103604 (2023).

Article 
ADS 

Google Scholar
 

Ke, Y. G. et al. Radiative topological biphoton states in modulated qubit arrays. Phys. Rev. Res. 2, 033190 (2020).

Article 

Google Scholar
 

Poshakinskiy, A. V. et al. Quantum Hall phases emerging from atom–photon interactions. npj Quantum Inf. 7, 3435 (2021).

Article 

Google Scholar
 

Roushan, P. et al. Chiral ground-state currents of interacting photons in a synthetic magnetic field. Nat. Phys. 13, 146–151 (2017).

Article 

Google Scholar
 

Walter, A.-S. et al. Quantization and its breakdown in a Hubbard–Thouless pump. Nat. Phys. 19, 1471–1475 (2023).

Article 

Google Scholar
 

Ke, Y. & Lee, C. Topological quantum tango. Nat. Phys. 19, 1387–1388 (2023).

Article 

Google Scholar
 

Song, W. et al. Dispersionless coupling among optical waveguides by artificial gauge field. Phys. Rev. Lett. 129, 053901 (2022). Introducing artificial gauge fields into photonic chips for broadband optical coupling.

Article 
ADS 

Google Scholar
 

Feng, X. et al. Non-Hermitian hybrid silicon photonic switching. Nat. Photon. 19, 264–270 (2025).

Article 
ADS 

Google Scholar
 

Dai, T. et al. A programmable topological photonic chip. Nat. Mater. 23, 928–936 (2024).

Article 
ADS 

Google Scholar
 

Lin, Z. et al. Ultrabroadband low-crosstalk dense lithium niobate waveguides by Floquet engineering. Phys. Rev. Appl. 20, 054005 (2023).

Article 
ADS 

Google Scholar
 

Zhao, W. et al. Landau rainbow induced by artificial gauge fields. Phys. Rev. Lett. 133, 233801 (2024).

Article 
ADS 

Google Scholar
 

Descheemaeker, L., Ginis, V., Viaene, S. & Tassin, P. Optical force enhancement using an imaginary vector potential for photons. Phys. Rev. Lett. 119, 137402 (2017).

Article 
ADS 

Google Scholar
 

Mittal, S., Goldschmidt, E. A. & Hafezi, M. A topological source of quantum light. Nature 561, 502–506 (2018).

Article 
ADS 

Google Scholar
 

Blanco-Redondo, A., Bell, B., Oren, D., Eggleton, B. J. & Segev, M. Topological protection of biphoton states. Science 362, 568–571 (2018).

Article 
ADS 
MathSciNet 

Google Scholar
 

Tambasco, J.-L. et al. Quantum interference of topological states of light. Sci. Adv. 4, 3187 (2018).

Article 
ADS 

Google Scholar
 

Wang, Z. et al. Artificial-gauge-field-based inverse design for wideband-flat power splitter and microring resonator. Adv. Photon. Nexus 4, 016001 (2025).


Google Scholar
 

Pilozzi, L., Farrelly, F. A., Marcucci, G. & Conti, C. Machine learning inverse problem for topological photonics. Commun. Phys. 1, 57 (2018).

Article 

Google Scholar
 

Xia, S. et al. Deep-learning-empowered synthetic dimension dynamics: morphing of light into topological modes. Adv. Photon. 6, 026005 (2024).

Article 
ADS 

Google Scholar