Abul-Husn, N. S. & Kenny, E. E. Personalized medicine and the power of electronic health records. Cell 177, 58–69 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhou, W. et al. Global Biobank meta-analysis initiative: powering genetic discovery across human disease. Cell Genom. 2, 100192 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Sirugo, G., Williams, S. M. & Tishkoff, S. A. The missing diversity in human genetic studies. Cell 177, 26–31 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Morales, J. et al. A standardized framework for representation of ancestry data in genomics studies, with application to the NHGRI-EBI GWAS Catalog. Genome Biol. 19, 21 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sinnott-Armstrong, N. et al. Genetics of 35 blood and urine biomarkers in the UK Biobank. Nat. Genet. 53, 185–194 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Lam, M. et al. Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat. Genet. 51, 1670–1678 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chen, J. et al. The trans-ancestral genomic architecture of glycemic traits. Nat. Genet. 53, 840–860 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hou, K. et al. Causal effects on complex traits are similar for common variants across segments of different continental ancestries within admixed individuals. Nat. Genet. 55, 549–558 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hu, S. et al. Fine-scale population structure and widespread conservation of genetic effect sizes between human groups across traits. Nat. Genet. 57, 379–389 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

SIGMA Type 2 Diabetes Consortium et al. Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population. JAMA 311, 2305–2314 (2014).

Article 

Google Scholar
 

Cohen, J. et al. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat. Genet. 37, 161–165 (2005).

Article 
CAS 
PubMed 

Google Scholar
 

Liu, Z. et al. Genetic architecture of the inflammatory bowel diseases across East Asian and European ancestries. Nat. Genet. 55, 796–806 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Miller, L. H., Mason, S. J., Clyde, D. F. & McGinniss, M. H. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N. Engl. J. Med. 295, 302–304 (1976).

Article 
CAS 
PubMed 

Google Scholar
 

Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ross, M. J. New insights into APOL1 and kidney disease in African children and Brazilians living with end-stage kidney disease. Kidney Int. Rep. 4, 908–910 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Genovese, G., Friedman, D. J. & Pollak, M. R. APOL1 variants and kidney disease in people of recent African ancestry. Nat. Rev. Nephrol. 9, 240–244 (2013).

Article 
CAS 
PubMed 

Google Scholar
 

Mägi, R. et al. Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution. Hum. Mol. Genet. 26, 3639–3650 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Asimit, J. L., Hatzikotoulas, K., McCarthy, M., Morris, A. P. & Zeggini, E. Trans-ethnic study design approaches for fine-mapping. Eur. J. Hum. Genet. 24, 1330–1336 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mahajan, A. et al. Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nat. Genet. 54, 560–572 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Huang, H. et al. Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature 547, 173–178 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schaid, D. J., Chen, W. & Larson, N. B. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat. Rev. Genet. 19, 491–504 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Graff, M. et al. Discovery and fine-mapping of height loci via high-density imputation of GWASs in individuals of African ancestry. Am. J. Hum. Genet. 108, 564–582 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Luo, Y. et al. A high-resolution HLA reference panel capturing global population diversity enables multi-ethnic fine-mapping in HIV host response. Nat. Genet. 53, 1504–1516 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Polygenic Risk Score Task Force of the International Common Disease Alliance. Responsible use of polygenic risk scores in the clinic: potential benefits, risks and gaps. Nat. Med. 27, 1876–1884 (2021).

Article 
CAS 

Google Scholar
 

Martin, A. R. et al. Human demographic history impacts genetic risk prediction across diverse populations. Am. J. Hum. Genet. 100, 635–649 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Scutari, M., Mackay, I. & Balding, D. Using genetic distance to infer the accuracy of genomic prediction. PLoS Genet. 12, e1006288 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang, Y. et al. Theoretical and empirical quantification of the accuracy of polygenic scores in ancestry divergent populations. Nat. Commun. 11, 3865 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ding, Y. et al. Polygenic scoring accuracy varies across the genetic ancestry continuum. Nature 618, 774–781 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Conti, D. V. et al. Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nat. Genet. 53, 65–75 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bigdeli, T. B. et al. Contributions of common genetic variants to risk of schizophrenia among individuals of African and Latino ancestry. Mol. Psychiatry 25, 2455–2467 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

National Academies of Sciences, Engineering, and Medicine. Using Population Descriptors in Genetics and Genomics Research: a New Framework for an Evolving Field (National Academies Press, 2023).

Ben-Eghan, C. et al. Don’t ignore genetic data from minority populations. Nature 585, 184–186 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

Article 

Google Scholar
 

Li, J. Z. et al. Worldwide human relationships inferred from genome-wide patterns of variation. Science 319, 1100–1104 (2008).

Article 
CAS 
PubMed 

Google Scholar
 

Mathieson, I. & Scally, A. What is ancestry? PLoS Genet. 16, e1008624 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lewis, A. C. F. et al. Getting genetic ancestry right for science and society. Science 376, 250–252 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 50, 1335–1341 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. Genome-wide association study identifies five new schizophrenia loci. Nat. Genet. 43, 969–976 (2011).

Article 

Google Scholar
 

Denny, J. C. et al. Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nat. Biotechnol. 31, 1102–1110 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

COVID-19 Host Genetics Initiative. Mapping the human genetic architecture of COVID-19. Nature 600, 472–477 (2021).

Article 

Google Scholar
 

Howrigan, D. Details and considerations of the UK Biobank GWAS. https://www.nealelab.is/blog/2017/9/11/details-and-considerations-of-the-uk-biobank-gwas (2017).

Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pazokitoroudi, A. et al. Efficient variance components analysis across millions of genomes. Nat. Commun. 11, 4020 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ghoussaini, M. et al. Open Targets Genetics: systematic identification of trait-associated genes using large-scale genetics and functional genomics. Nucleic Acids Res. 49, D1311–D1320 (2020).

Article 
PubMed Central 

Google Scholar
 

Solovieff, N., Cotsapas, C., Lee, P. H., Purcell, S. M. & Smoller, J. W. Pleiotropy in complex traits: challenges and strategies. Nat. Rev. Genet. 14, 483–495 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sun, L., Wang, Z., Lu, T., Manolio, T. A. & Paterson, A. D. eXclusionarY: 10 years later, where are the sex chromosomes in GWASs? Am. J. Hum. Genet. 110, 903–912 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rasooly, D. et al. Genome-wide association analysis and Mendelian randomization proteomics identify drug targets for heart failure. Nat. Commun. 14, 3826 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gage, P. J., Suh, H. & Camper, S. A. Dosage requirement of Pitx2 for development of multiple organs. Development 126, 4643–4651 (1999).

Article 
CAS 
PubMed 

Google Scholar
 

Tümer, Z. & Bach-Holm, D. Axenfeld-Rieger syndrome and spectrum of PITX2 and FOXC1 mutations. Eur. J. Hum. Genet. 17, 1527–1539 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Berry, F. B. et al. Functional interactions between FOXC1 and PITX2 underlie the sensitivity to FOXC1 gene dose in Axenfeld–Rieger syndrome and anterior segment dysgenesis. Hum. Mol. Genet. 15, 905–919 (2006).

Article 
CAS 
PubMed 

Google Scholar
 

Gibson, G. Population genetics and GWAS: a primer. PLoS Biol. 16, e2005485 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Martin, A. R., Daly, M. J., Robinson, E. B., Hyman, S. E. & Neale, B. M. Predicting polygenic risk of psychiatric disorders. Biol. Psychiatry 86, 97–109 (2019).

Article 
PubMed 

Google Scholar
 

Liu, D. J. & Leal, S. M. Estimating genetic effects and quantifying missing heritability explained by identified rare-variant associations. Am. J. Hum. Genet. 91, 585–596 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sarnowski, C. et al. Impact of rare and common genetic variants on diabetes diagnosis by hemoglobin A1c in multi-ancestry cohorts: the Trans-Omics for Precision Medicine Program. Am. J. Hum. Genet. 105, 706–718 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kanai, M. et al. Meta-analysis fine-mapping is often miscalibrated at single-variant resolution. Cell Genom. 2, 100210 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Atkinson, E. G. et al. Tractor uses local ancestry to enable the inclusion of admixed individuals in GWAS and to boost power. Nat. Genet. 53, 195–204 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhou, W. et al. Global Biobank Meta-analysis Initiative: powering genetic discovery across human diseases. Cell Genom. 2, 100192 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Breeyear, J. H. et al. Adaptive selection at G6PD and disparities in diabetes complications. Nat. Med. 30, 2480–2488 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

All of Us Research Program Genomics Investigators. Genomic data in the All of Us research program. Nature 627, 340–346 (2024).

Article 

Google Scholar
 

Panagiotou, O. A., Willer, C. J., Hirschhorn, J. N. & Ioannidis, J. P. A. The power of meta-analysis in genome-wide association studies. Annu. Rev. Genomics Hum. Genet. 14, 441–465 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lin, D. Y. & Zeng, D. Meta-analysis of genome-wide association studies: no efficiency gain in using individual participant data. Genet. Epidemiol. 34, 60–66 (2010).

Article 
CAS 
PubMed 

Google Scholar
 

Balding, D. J. A tutorial on statistical methods for population association studies. Nat. Rev. Genet. 7, 781–791 (2006).

Article 
CAS 
PubMed 

Google Scholar
 

Witherspoon, D. J. et al. Genetic similarities within and between human populations. Genetics 176, 351–359 (2007).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Henn, B. M., Cavalli-Sforza, L. L. & Feldman, M. W. The great human expansion. Proc. Natl Acad. Sci. USA 109, 17758–17764 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bamshad, M., Wooding, S., Salisbury, B. A. & Stephens, J. C. Deconstructing the relationship between genetics and race. Nat. Rev. Genet. 5, 598–609 (2004).

Article 
CAS 
PubMed 

Google Scholar
 

Meyer, M. N. et al. Wrestling with social and behavioral genomics: risks, potential benefits, and ethical responsibility. Hastings Cent. Rep. 53, S2–S49 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Karczewski, K. et al. atgu/ukbb_pan_ancestry: figure release v.1.0. Zenodo https://doi.org/10.5281/zenodo.15420124 (2025).

Zhang, X. et al. Whole genome sequencing analysis of body mass index identifies novel African ancestry-specific risk allele. Preprint at medRxiv https://doi.org/10.1101/2023.08.21.23293271 (2023).