Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

Article 
ADS 

Google Scholar
 

Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

Article 
ADS 

Google Scholar
 

Maring, N. et al. A versatile single-photon-based quantum computing platform. Nat. Photon. 18, 603–609 (2024).

Article 
ADS 

Google Scholar
 

Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).

Article 
ADS 

Google Scholar
 

Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

Article 
ADS 

Google Scholar
 

Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).

Article 
ADS 

Google Scholar
 

Aghaee Rad, H. et al. Scaling and networking a modular photonic quantum computer. Nature 638, 912–919 (2025).

Article 
ADS 

Google Scholar
 

Alexander, K. et al. A manufacturable platform for photonic quantum computing. Nature 641, 876–883 (2025).

Article 
ADS 

Google Scholar
 

O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).

Article 
ADS 

Google Scholar
 

Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

Article 
ADS 

Google Scholar
 

Chu, Y. et al. Quantum acoustics with superconducting qubits. Science 358, 199–202 (2017).

Article 
ADS 
MathSciNet 

Google Scholar
 

Satzinger, K. J. et al. Quantum control of surface acoustic-wave phonons. Nature 563, 661–665 (2018).

Article 
ADS 

Google Scholar
 

Qiao, H. et al. Splitting phonons: building a platform for linear mechanical quantum computing. Science 380, 1030–1033 (2023).

Article 
ADS 
MathSciNet 

Google Scholar
 

Arrangoiz-Arriola, P. et al. Resolving the energy levels of a nanomechanical oscillator. Nature 571, 537–540 (2019).

Article 
ADS 

Google Scholar
 

Fu, W. et al. Phononic integrated circuitry and spin–orbit interaction of phonons. Nat. Commun. 10, 2743 (2019).

Article 
ADS 

Google Scholar
 

Kuzyk, M. C. & Wang, H. Scaling phononic quantum networks of solid-state spins with closed mechanical subsystems. Phys. Rev. X 8, 041027 (2018).


Google Scholar
 

Taylor, J. C., Chatterjee, E., Kindel, W. F., Soh, D. & Eichenfield, M. Reconfigurable quantum phononic circuits via piezo-acoustomechanical interactions. npj Quantum Inf. 8, 19 (2022).

Article 
ADS 

Google Scholar
 

Chu, Y. et al. Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator. Nature 563, 666–670 (2018).

Article 
ADS 

Google Scholar
 

MacCabe, G. S. et al. Nano-acoustic resonator with ultralong phonon lifetime. Science 370, 840–843 (2020).

Article 
ADS 

Google Scholar
 

Zivari, A., Stockill, R., Fiaschi, N. & Gröblacher, S. Non-classical mechanical states guided in a phononic waveguide. Nat. Phys. 18, 789–793 (2022).

Article 

Google Scholar
 

Bozkurt, A. et al. A quantum electromechanical interface for long-lived phonons. Nat. Phys. 19, 1326–1332 (2023).

Article 

Google Scholar
 

Bozkurt, A. B., Golami, O., Yu, Y., Tian, H. & Mirhosseini, M. A mechanical quantum memory for microwave photons. Nat. Phys. https://doi.org/10.1038/s41567-025-02975-w (2025).

Hitchcock, O. A. et al. Correlated dephasing in a piezoelectrically transduced silicon phononic waveguide. Preprint at https://arxiv.org/abs/2502.16426 (2025).

Bochmann, J., Vainsencher, A., Awschalom, D. D. & Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712–716 (2013).

Article 

Google Scholar
 

Andrews, R. W. et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321–326 (2014).

Article 

Google Scholar
 

Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).

Article 
ADS 

Google Scholar
 

Jiang, W. et al. Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency. Nat. Commun. 11, 1166 (2020).

Article 
ADS 

Google Scholar
 

Arnold, G. et al. Converting microwave and telecom photons with a silicon photonic nanomechanical interface. Nat. Commun. 11, 4460 (2020).

Article 
ADS 

Google Scholar
 

Weaver, M. J. et al. An integrated microwave-to-optics interface for scalable quantum computing. Nat. Nanotechnol. 19, 166–172 (2023).

Article 
ADS 

Google Scholar
 

Hann, C. T. et al. Hardware-efficient quantum random access memory with hybrid quantum acoustic systems. Phys. Rev. Lett. 123, 250501 (2019).

Article 
ADS 

Google Scholar
 

Wallucks, A., Marinković, I., Hensen, B., Stockill, R. & Gröblacher, S. A quantum memory at telecom wavelengths. Nat. Phys. 16, 772–777 (2020).

Article 

Google Scholar
 

Chamberland, C. et al. Building a fault-tolerant quantum computer using concatenated cat codes. PRX Quantum 3, 010329 (2022).

Article 
ADS 

Google Scholar
 

Wollack, E. A. et al. Quantum state preparation and tomography of entangled mechanical resonators. Nature 604, 463–467 (2022).

Article 
ADS 

Google Scholar
 

Chou, M.-H. et al. Deterministic multi-phonon entanglement between two mechanical resonators on separate substrates. Nat. Commun. 16, 1450 (2025).

Article 
ADS 

Google Scholar
 

Gustafsson, M. V. et al. Propagating phonons coupled to an artificial atom. Science 346, 207–211 (2014).

Article 
ADS 

Google Scholar
 

Bienfait, A. et al. Phonon-mediated quantum state transfer and remote qubit entanglement. Science 364, 368–371 (2019).

Article 
ADS 

Google Scholar
 

Dumur, É. et al. Quantum communication with itinerant surface acoustic wave phonons. npj Quantum Inf. 7, 173 (2021).

Article 
ADS 

Google Scholar
 

Van Campenhout, J., Green, W. M. J., Assefa, S. & Vlasov, Y. A. Integrated NiSi waveguide heaters for cmos-compatible silicon thermo-optic devices. Opt. Lett. 35, 1013–1015 (2010).


Google Scholar
 

Englund, D. et al. Controlling cavity reflectivity with a single quantum dot. Nature 450, 857–861 (2007).

Article 
ADS 

Google Scholar
 

Tiecke, T. G. et al. Nanophotonic quantum phase switch with a single atom. Nature 508, 241–244 (2014).

Article 
ADS 

Google Scholar
 

Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020).

Article 
ADS 

Google Scholar
 

Kono, S., Koshino, K., Tabuchi, Y., Noguchi, A. & Nakamura, Y. Quantum non-demolition detection of an itinerant microwave photon. Nat. Phys. 14, 546–549 (2018).

Article 

Google Scholar
 

Besse, J.-C. et al. Single-shot quantum nondemolition detection of individual itinerant microwave photons. Phys. Rev. X 8, 021003 (2018).


Google Scholar
 

Zhang, J. et al. Broadband tunable phase shifter for microwaves. AIP Adv. 10, 065128 (2020).

Article 
ADS 

Google Scholar
 

Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

Article 
ADS 

Google Scholar
 

Barends, R. et al. Coherent Josephson qubit suitable for scalable quantum integrated circuits. Phys. Rev. Lett. 111, 080502 (2013).

Article 
ADS 

Google Scholar
 

Chen, Y. et al. Qubit architecture with high coherence and fast tunable coupling. Phys. Rev. Lett. 113, 220502 (2014).

Article 
ADS 

Google Scholar
 

Ekström, M. K. et al. Surface acoustic wave unidirectional transducers for quantum applications. Appl. Phys. Lett. 110, 073105 (2017).

Article 
ADS 

Google Scholar
 

Lund, M. M., Yang, F. & Mølmer, K. Perfect splitting of a two-photon pulse. Phys. Rev. A 107, 023715 (2023).

Article 
ADS 
MathSciNet 

Google Scholar
 

Beaudoin, F., da Silva, M. P., Dutton, Z. & Blais, A. First-order sidebands in circuit QED using qubit frequency modulation. Phys. Rev. A 86, 022305 (2012).

Article 
ADS 

Google Scholar
 

Besse, J.-C. et al. Realizing a deterministic source of multipartite-entangled photonic qubits. Nat. Commun. 11, 4877 (2020).

Article 
ADS 

Google Scholar
 

Ferreira, V. S., Kim, G., Butler, A., Pichler, H. & Painter, O. Deterministic generation of multidimensional photonic cluster states with a single quantum emitter. Nat. Phys. 20, 865–870 (2024).

Article 

Google Scholar
 

Wang, Z., Qiao, H., Cleland, A. N. & Jiang, L. Quantum random access memory with transmon-controlled phonon routing. Phys. Rev. Lett. 134, 210601 (2025).

Article 
ADS 

Google Scholar
 

Lemonde, M.-A. et al. Phonon networks with silicon-vacancy centers in diamond waveguides. Phys. Rev. Lett. 120, 213603 (2018).

Article 
ADS 

Google Scholar
 

Safavi-Naeini, A. H., Van Thourhout, D., Baets, R. & Van Laer, R. Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics. Optica 6, 213–232 (2019).


Google Scholar
 

Neuman, T. et al. A phononic interface between a superconducting quantum processor and quantum networked spin memories. npj Quantum Inf. 7, 121 (2021).

Article 
ADS 

Google Scholar
 

Chen, W. et al. Scalable and programmable phononic network with trapped ions. Nat. Phys. 19, 877–883 (2023).

Article 

Google Scholar
 

Steffen, M. et al. Measurement of the entanglement of two superconducting qubits via state tomography. Science 313, 1423–1425 (2006).

Article 
ADS 
MathSciNet 

Google Scholar
 

Bialczak, R. C. et al. Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits. Nat. Phys. 6, 409–413 (2010).

Article 

Google Scholar