Tokura, Y., Yasuda, K. & Tsukazaki, A. Magnetic topological insulators. Nat. Rev. Phys. 1, 126–143 (2019).
Chang, C.-Z., Liu, C.-X. & MacDonald, A. H. Colloquium: Quantum anomalous Hall effect. Rev. Mod. Phys. 95, 011002 (2023).
Sekine, A. & Nomura, K. Axion electrodynamics in topological materials. J. Appl. Phys. 129, 141101 (2021).
Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).
Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).
Sato, M. & Fujimoto, S. Majorana fermions and topology in superconductors. J. Phys. Soc. Jpn 85, 072001 (2016).
Sasaki, S. & Mizushima, T. Superconducting doped topological materials. Phys. C. 514, 206–217 (2015).
Neha, P., Biswas, P. K., Das, T. & Patnaik, S. Time-reversal symmetry breaking in topological superconductor Sr0.1Bi2Se3. Phys. Rev. Mater. 3, 074201 (2019).
Zhang, P. et al. Observation of topological superconductivity on the surface of an iron-based superconductor. Science 360, 182–186 (2018).
Wang, D. et al. Evidence for Majorana bound states in an iron-based superconductor. Science 362, 333–335 (2018).
Machida, T. et al. Zero-energy vortex bound state in the superconducting topological surface state of Fe(Se, Te). Nat. Mater. 18, 811–815 (2019).
Zhu, S. et al. Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor. Science 367, 189–192 (2020).
Ghosh, S. K. et al. Time-reversal symmetry breaking superconductivity in three-dimensional Dirac semimetallic silicides. Phys. Rev. Res. 4, L012031 (2022).
Shang, T. et al. Unconventional superconductivity in topological Kramers nodal-line semimetals. Sci. Adv. 8, eabq6589 (2022).
Mukasa, K. et al. High-pressure phase diagrams of FeSe1−xTex: correlation between suppressed nematicity and enhanced superconductivity. Nat. Commun. 12, 381 (2021).
Mukasa, K. et al. Enhanced superconducting pairing strength near a pure nematic quantum critical point. Phys. Rev. X 13, 011032 (2023).
Shibauchi, T., Hanaguri, T. & Matsuda, Y. Exotic superconducting states in FeSe-based materials. J. Phys. Soc. Jpn 89, 102002 (2020).
Li, Y.-F. et al. Orbital ingredients and persistent Dirac surface state for the topological band structure in FeTe0.55Se0.45. Phys. Rev. X 14, 021043 (2024).
Chiu, C.-K., Machida, T., Huang, Y., Hanaguri, T. & Zhang, F.-C. Scalable Majorana vortex modes in iron-based superconductors. Sci. Adv. 6, eaay0443 (2020).
Hosoi, S. et al. Nematic quantum critical point without magnetism in FeSe1−xSx superconductors. Proc. Natl. Acad. Sci. USA 113, 8139–8143 (2016).
Ishida, K. et al. Pure nematic quantum critical point accompanied by a superconducting dome. Proc. Natl. Acad. Sci. USA 119, e2110501119 (2022).
Matsuura, K. et al. Two superconducting states with broken time-reversal symmetry in FeSe1−xSx. Proc. Natl. Acad. Sci. USA 120, e2208276120 (2023).
Kang, J., Chubukov, A. V. & Fernandes, R. M. Time-reversal symmetry-breaking nematic superconductivity in FeSe. Phys. Rev. B 98, 064508 (2018).
Watashige, T. et al. Evidence for time-reversal symmetry breaking of the superconducting state near twin-boundary interfaces in FeSe revealed by scanning tunneling spectroscopy. Phys. Rev. X 5, 031022 (2015).
Hashimoto, T. et al. Superconducting gap anisotropy sensitive to nematic domains in FeSe. Nat. Commun. 9, 282 (2018).
Hanaguri, T. et al. Two distinct superconducting pairing states divided by the nematic end point in FeSe1−xSex. Sci. Adv. 4, eaar6419 (2018).
Mizukami, Y. et al. Unusual crossover from Bardeen-Cooper-Schrieffer to Bose-Einstein-condensate superconductivity in iron chalcogenides. Commun. Phys. 6, 183 (2023).
Sato, Y. et al. Abrupt change of the superconducting gap structure at the nematic critical point in FeSe1−xSx. Proc. Natl. Acad. Sci. USA 115, 1227–1231 (2018).
Setty, C., Bhattacharyya, S., Cao, Y., Kreisel, A. & Hirschfeld, P. Topological ultranodal pair states in iron-based superconductors. Nat. Commun. 11, 523 (2020).
Li, Y. et al. Electronic properties of the bulk and surface states of Fe1+yTe1−xSex. Nat. Mater. 20, 1221–1227 (2021).
Koshika, Y. et al. Effects of annealing under tellurium vapor for Fe1.03Te0.8Se0.2 single crystals. J. Phys. Soc. Jpn 82, 023703 (2013).
Watanabe, T. et al. Electronic phase diagram of Fe1+yTe1−xSex revealed by magnetotransport measurements. Mod. Phys. Lett. B 34, 2040051 (2020).
Fujii, T., Uezono, Y., Otsuka, T., Hagisawa, S. & Watanabe, T. Electronic phase diagram in Te-annealed superconducting FeTe1−xSex revealed by magnetic susceptibility. Proc. 29th Int. Conf. Low. Temp. Phys. 38, 011027 (2023).
Tranquada, J. M., Xu, G. & Zaliznyak, I. A. Magnetism and superconductivity in Fe1+yTe1−xSex. J. Phys.: Condens. Matt. 32, 374003 (2020).
Zaki, N., Gu, G., Tsvelik, A., Wu, C. & Johnson, P. D. Time-reversal symmetry breaking in the Fe-chalcogenide superconductors. Proc. Natl Acad. Sci. USA 118, e2007241118 (2021).
Farhang, C. et al. Revealing the origin of time-reversal symmetry breaking in Fe-chalcogenide superconductor FeTe1−xSex. Phys. Rev. Lett. 130, 046702 (2023).
McLaughlin, N. J. et al. Strong correlation between superconductivity and ferromagnetism in an Fe-chalcogenide superconductor. Nano Lett. 21, 7277–7283 (2021).
Lin, Y. S. et al. Direct observation of quantum anomalous vortex in Fe(Se, Te). Phys. Rev. X 13, 011046 (2023).
Qiu, G. et al. Emergent ferromagnetism with superconductivity in Fe (Te, Se) van der Waals Josephson junctions. Nat. Commun. 14, 6691 (2023).
Luke, G. M. et al. Time-reversal symmetry-breaking superconductivity in Sr2RuO4. Nature 394, 558–561 (1998).
Matsumoto, M. & Sigrist, M. Quasiparticle states near the surface and the domain wall in a px ± ipy -wave superconductor. J. Phys. Soc. Jpn 68, 994–1007 (1999).
Bendele, M. et al. Coexistence of superconductivity and magnetism in FeSe1-x under pressure. Phys. Rev. B 85, 064517 (2012).
Biswas, P. K. et al. Muon-spin-spectroscopy study of the penetration depth of FeTe0.5Se0.5. Phys. Rev. B 81, 092510 (2010).
Sundar, S. et al. Ubiquitous spin freezing in the superconducting state of UTe2. Commun. Phys. 6, 24 (2023).
Cheung, S. C. et al. Disentangling superconducting and magnetic orders in NaFe1-xNixAs using muon spin rotation. Phys. Rev. B 97, 224508 (2018).
Khasanov, R. et al. Coexistence of incommensurate magnetism and superconductivity in Fe1+ySexTe1-x. Phys. Rev. B 80, 140511 (2009).
Hiraishi, M. et al. Bipartite magnetic parent phases in the iron oxypnictide superconductor. Nat. Phys. 10, 300–303 (2014).
Sigrist, M., Kuboki, K., Lee, P. A., Millis, A. J. & Rice, T. M. Influence of twin boundaries on Josephson junctions between high-temperature and conventional superconductors. Phys. Rev. B 53, 2835–2849 (1996).
Lado, J. L. & Sigrist, M. Detecting nonunitary multiorbital superconductivity with Dirac points at finite energies. Phys. Rev. Res. 1, 033107 (2019).
Hu, L.-H., Johnson, P. D. & Wu, C. Pairing symmetry and topological surface state in iron-chalcogenide superconductors. Phys. Rev. Res. 2, 022021 (2020).
Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).
Mogi, M. et al. A magnetic heterostructure of topological insulators as a candidate for an axion insulator. Nat. Mater. 16, 516–521 (2017).