Tokura, Y., Yasuda, K. & Tsukazaki, A. Magnetic topological insulators. Nat. Rev. Phys. 1, 126–143 (2019).


Google Scholar
 

Chang, C.-Z., Liu, C.-X. & MacDonald, A. H. Colloquium: Quantum anomalous Hall effect. Rev. Mod. Phys. 95, 011002 (2023).

ADS 
CAS 

Google Scholar
 

Sekine, A. & Nomura, K. Axion electrodynamics in topological materials. J. Appl. Phys. 129, 141101 (2021).

ADS 
CAS 

Google Scholar
 

Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

ADS 
PubMed 

Google Scholar
 

Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

ADS 
CAS 

Google Scholar
 

Sato, M. & Fujimoto, S. Majorana fermions and topology in superconductors. J. Phys. Soc. Jpn 85, 072001 (2016).

ADS 

Google Scholar
 

Sasaki, S. & Mizushima, T. Superconducting doped topological materials. Phys. C. 514, 206–217 (2015).

ADS 
CAS 

Google Scholar
 

Neha, P., Biswas, P. K., Das, T. & Patnaik, S. Time-reversal symmetry breaking in topological superconductor Sr0.1Bi2Se3. Phys. Rev. Mater. 3, 074201 (2019).

CAS 

Google Scholar
 

Zhang, P. et al. Observation of topological superconductivity on the surface of an iron-based superconductor. Science 360, 182–186 (2018).

ADS 
PubMed 

Google Scholar
 

Wang, D. et al. Evidence for Majorana bound states in an iron-based superconductor. Science 362, 333–335 (2018).

ADS 
CAS 
PubMed 

Google Scholar
 

Machida, T. et al. Zero-energy vortex bound state in the superconducting topological surface state of Fe(Se, Te). Nat. Mater. 18, 811–815 (2019).

ADS 
CAS 
PubMed 

Google Scholar
 

Zhu, S. et al. Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor. Science 367, 189–192 (2020).

ADS 
CAS 
PubMed 

Google Scholar
 

Ghosh, S. K. et al. Time-reversal symmetry breaking superconductivity in three-dimensional Dirac semimetallic silicides. Phys. Rev. Res. 4, L012031 (2022).

CAS 

Google Scholar
 

Shang, T. et al. Unconventional superconductivity in topological Kramers nodal-line semimetals. Sci. Adv. 8, eabq6589 (2022).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mukasa, K. et al. High-pressure phase diagrams of FeSe1−xTex: correlation between suppressed nematicity and enhanced superconductivity. Nat. Commun. 12, 381 (2021).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mukasa, K. et al. Enhanced superconducting pairing strength near a pure nematic quantum critical point. Phys. Rev. X 13, 011032 (2023).

CAS 

Google Scholar
 

Shibauchi, T., Hanaguri, T. & Matsuda, Y. Exotic superconducting states in FeSe-based materials. J. Phys. Soc. Jpn 89, 102002 (2020).

ADS 

Google Scholar
 

Li, Y.-F. et al. Orbital ingredients and persistent Dirac surface state for the topological band structure in FeTe0.55Se0.45. Phys. Rev. X 14, 021043 (2024).

CAS 

Google Scholar
 

Chiu, C.-K., Machida, T., Huang, Y., Hanaguri, T. & Zhang, F.-C. Scalable Majorana vortex modes in iron-based superconductors. Sci. Adv. 6, eaay0443 (2020).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hosoi, S. et al. Nematic quantum critical point without magnetism in FeSe1−xSx superconductors. Proc. Natl. Acad. Sci. USA 113, 8139–8143 (2016).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ishida, K. et al. Pure nematic quantum critical point accompanied by a superconducting dome. Proc. Natl. Acad. Sci. USA 119, e2110501119 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Matsuura, K. et al. Two superconducting states with broken time-reversal symmetry in FeSe1−xSx. Proc. Natl. Acad. Sci. USA 120, e2208276120 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kang, J., Chubukov, A. V. & Fernandes, R. M. Time-reversal symmetry-breaking nematic superconductivity in FeSe. Phys. Rev. B 98, 064508 (2018).

ADS 
CAS 

Google Scholar
 

Watashige, T. et al. Evidence for time-reversal symmetry breaking of the superconducting state near twin-boundary interfaces in FeSe revealed by scanning tunneling spectroscopy. Phys. Rev. X 5, 031022 (2015).


Google Scholar
 

Hashimoto, T. et al. Superconducting gap anisotropy sensitive to nematic domains in FeSe. Nat. Commun. 9, 282 (2018).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Hanaguri, T. et al. Two distinct superconducting pairing states divided by the nematic end point in FeSe1−xSex. Sci. Adv. 4, eaar6419 (2018).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Mizukami, Y. et al. Unusual crossover from Bardeen-Cooper-Schrieffer to Bose-Einstein-condensate superconductivity in iron chalcogenides. Commun. Phys. 6, 183 (2023).

CAS 

Google Scholar
 

Sato, Y. et al. Abrupt change of the superconducting gap structure at the nematic critical point in FeSe1−xSx. Proc. Natl. Acad. Sci. USA 115, 1227–1231 (2018).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Setty, C., Bhattacharyya, S., Cao, Y., Kreisel, A. & Hirschfeld, P. Topological ultranodal pair states in iron-based superconductors. Nat. Commun. 11, 523 (2020).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, Y. et al. Electronic properties of the bulk and surface states of Fe1+yTe1−xSex. Nat. Mater. 20, 1221–1227 (2021).

ADS 
CAS 
PubMed 

Google Scholar
 

Koshika, Y. et al. Effects of annealing under tellurium vapor for Fe1.03Te0.8Se0.2 single crystals. J. Phys. Soc. Jpn 82, 023703 (2013).

ADS 

Google Scholar
 

Watanabe, T. et al. Electronic phase diagram of Fe1+yTe1−xSex revealed by magnetotransport measurements. Mod. Phys. Lett. B 34, 2040051 (2020).

ADS 
CAS 

Google Scholar
 

Fujii, T., Uezono, Y., Otsuka, T., Hagisawa, S. & Watanabe, T. Electronic phase diagram in Te-annealed superconducting FeTe1−xSex revealed by magnetic susceptibility. Proc. 29th Int. Conf. Low. Temp. Phys. 38, 011027 (2023).


Google Scholar
 

Tranquada, J. M., Xu, G. & Zaliznyak, I. A. Magnetism and superconductivity in Fe1+yTe1−xSex. J. Phys.: Condens. Matt. 32, 374003 (2020).

CAS 

Google Scholar
 

Zaki, N., Gu, G., Tsvelik, A., Wu, C. & Johnson, P. D. Time-reversal symmetry breaking in the Fe-chalcogenide superconductors. Proc. Natl Acad. Sci. USA 118, e2007241118 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Farhang, C. et al. Revealing the origin of time-reversal symmetry breaking in Fe-chalcogenide superconductor FeTe1−xSex. Phys. Rev. Lett. 130, 046702 (2023).

ADS 
CAS 
PubMed 

Google Scholar
 

McLaughlin, N. J. et al. Strong correlation between superconductivity and ferromagnetism in an Fe-chalcogenide superconductor. Nano Lett. 21, 7277–7283 (2021).

ADS 
CAS 
PubMed 

Google Scholar
 

Lin, Y. S. et al. Direct observation of quantum anomalous vortex in Fe(Se, Te). Phys. Rev. X 13, 011046 (2023).

CAS 

Google Scholar
 

Qiu, G. et al. Emergent ferromagnetism with superconductivity in Fe (Te, Se) van der Waals Josephson junctions. Nat. Commun. 14, 6691 (2023).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Luke, G. M. et al. Time-reversal symmetry-breaking superconductivity in Sr2RuO4. Nature 394, 558–561 (1998).

ADS 
CAS 

Google Scholar
 

Matsumoto, M. & Sigrist, M. Quasiparticle states near the surface and the domain wall in a px ± ipy -wave superconductor. J. Phys. Soc. Jpn 68, 994–1007 (1999).

Bendele, M. et al. Coexistence of superconductivity and magnetism in FeSe1-x under pressure. Phys. Rev. B 85, 064517 (2012).

ADS 

Google Scholar
 

Biswas, P. K. et al. Muon-spin-spectroscopy study of the penetration depth of FeTe0.5Se0.5. Phys. Rev. B 81, 092510 (2010).

ADS 

Google Scholar
 

Sundar, S. et al. Ubiquitous spin freezing in the superconducting state of UTe2. Commun. Phys. 6, 24 (2023).

CAS 

Google Scholar
 

Cheung, S. C. et al. Disentangling superconducting and magnetic orders in NaFe1-xNixAs using muon spin rotation. Phys. Rev. B 97, 224508 (2018).

ADS 
CAS 

Google Scholar
 

Khasanov, R. et al. Coexistence of incommensurate magnetism and superconductivity in Fe1+ySexTe1-x. Phys. Rev. B 80, 140511 (2009).

ADS 

Google Scholar
 

Hiraishi, M. et al. Bipartite magnetic parent phases in the iron oxypnictide superconductor. Nat. Phys. 10, 300–303 (2014).

CAS 

Google Scholar
 

Sigrist, M., Kuboki, K., Lee, P. A., Millis, A. J. & Rice, T. M. Influence of twin boundaries on Josephson junctions between high-temperature and conventional superconductors. Phys. Rev. B 53, 2835–2849 (1996).

ADS 
CAS 

Google Scholar
 

Lado, J. L. & Sigrist, M. Detecting nonunitary multiorbital superconductivity with Dirac points at finite energies. Phys. Rev. Res. 1, 033107 (2019).

CAS 

Google Scholar
 

Hu, L.-H., Johnson, P. D. & Wu, C. Pairing symmetry and topological surface state in iron-chalcogenide superconductors. Phys. Rev. Res. 2, 022021 (2020).

CAS 

Google Scholar
 

Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

ADS 

Google Scholar
 

Mogi, M. et al. A magnetic heterostructure of topological insulators as a candidate for an axion insulator. Nat. Mater. 16, 516–521 (2017).

ADS 
CAS 
PubMed 

Google Scholar