Rosch S, Kresoja KP, Besler C, Fengler K, Schöber AR, von Roeder M, et al. Characteristics of heart failure with preserved ejection fraction across the range of left ventricular ejection fraction. Circulation. 2022;146(7):506–18.

Article 
CAS 
PubMed 

Google Scholar
 

Duan X, Zhang X, Sun B. The landscape of novel antidiabetic drugs in diabetic HFpEF: relevant mechanisms and clinical implications. Cardiovasc Diabetol. 2025;24(1):186. https://doi.org/10.1186/s12933-025-02750-4.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gorica E, Geiger MA, Di Venanzio L, Atzemian N, Kleeberger JA, Grigorian D, et al. Cardiometabolic heart failure with preserved ejection fraction: from molecular signatures to personalized treatment. Cardiovasc Diabetol. 2025;24(1):265. https://doi.org/10.1186/s12933-025-02774-w.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gorica E, Spezzini J, Papadopoulou I, Telesca M, Masciovecchio V, Moahmmed SA, et al. Single nuclei RNA-sequencing unveils alveolar macrophages as drivers of endothelial damage in obese HFpEF-related pulmonary hypertension. Cardiovasc Diabetol. 2025;24(1):268. https://doi.org/10.1186/s12933-025-02772-y.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bertrand A, Zhou X, Lewis A, Monfeuga T, Gupta R, Grau V, et al. Sex-specific cardiometabolic multimorbidity, metabolic syndrome and left ventricular function in heart failure with preserved ejection fraction in the UK Biobank. Cardiovasc Diabetol. 2025;24(1):238. https://doi.org/10.1186/s12933-025-02788-4.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pugliese NR, Paneni F, Tricò D, Bacca AV, De Biase N, Dalpiaz H, et al. Refining the link between obesity and heart failure: insights from GLP-1 receptor agonist trials and studies adopting direct adiposity measures. Cardiovasc Diabetol. 2025;24(1):224. https://doi.org/10.1186/s12933-025-02778-6.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cinti F, Laborante R, Cappannoli L, Morciano C, Gugliandolo S, Pontecorvi A, et al. The effects of SGLT2i on cardiac metabolism in patients with HFpEF: fact or fiction? Cardiovasc Diabetol. 2025;24(1):208. https://doi.org/10.1186/s12933-025-02767-9.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Salerno N, Ielapi J, Cersosimo A, Leo I, Di Costanzo A, Armentaro G, et al. Early hemodynamic impact of SGLT2 inhibitors in overweight cardiometabolic heart failure: beyond fluid offloading to vascular adaptation- a preliminary report. Cardiovasc Diabetol. 2025;24(1):141. https://doi.org/10.1186/s12933-025-02699-4.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Abou Zaki R, Ma RCW, El-Osta A. Epigenomic biomarkers of cardiometabolic disease: how far are we from daily practice? Cardiovasc Diabetol. 2024;23(1):400. https://doi.org/10.1186/s12933-024-02497-4.

Article 
PubMed 
PubMed Central 

Google Scholar
 

van Dalen BM, Chin JF, Motiram PA, Hendrix A, Emans ME, Brugts JJ, et al. Challenges in the diagnosis of heart failure with preserved ejection fraction in individuals with obesity. Cardiovasc Diabetol. 2025;24(1):71. https://doi.org/10.1186/s12933-025-02612-z.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Delalat S, Sultana I, Osman H, Sieme M, Zhazykbayeva S, Herwig M, et al. Dysregulated inflammation, oxidative stress, and protein quality control in diabetic HFpEF: unraveling mechanisms and therapeutic targets. Cardiovasc Diabetol. 2025;24(1):211. https://doi.org/10.1186/s12933-025-02734-4.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Weerts J, Schroen BLM, Barandiarán Aizpurua A, Berendschot TTJM, Brandts L, Webers CAB, et al. Microvascular dysfunction across organs in heart failure with preserved ejection fraction: the PROSE-HFpEF case-control study. Cardiovasc Diabetol. 2025;24(1):310. https://doi.org/10.1186/s12933-025-02850-1.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Li XN, Liu YT, Kang S, Qu Yang DZ, Xiao HY, Ma WK, et al. Interdependence between myocardial deformation and perfusion in patients with T2DM and HFpEF: a feature-tracking and stress perfusion CMR study. Cardiovasc Diabetol. 2024;23(1):303. https://doi.org/10.1186/s12933-024-02380-2.PMID:39152461.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Landolfo M, Spannella F, Giulietti F, Ortensi B, Stella L, Carlucci MA, et al. Detecting heart stress using NT-proBNP in patients with type 2 diabetes mellitus and hypertension or high-normal blood pressure: a cross-sectional multicentric study. Cardiovasc Diabetol. 2024;23(1):297. https://doi.org/10.1186/s12933-024-02391-z.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Beyer RE, Müller ML, Doeblin P, Werhahn SM, Chiribiri A, Tschöpe C, et al. Atrial dysfunction: a contrast-free marker for HFpEF in obese diabetics-insights from comprehensive CMR and serum biomarker analyses. Cardiovasc Diabetol. 2025;24(1):258. https://doi.org/10.1186/s12933-025-02808-3.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Iveljic I, Young M, Corhodzic E, Cullen F, Prag HA, Murphy MP, et al. Type 2 diabetes worsens the outcome of ischemia/reperfusion in female STEMI patients and female db/db mice with HFpEF cardiometabolic phenotype. Cardiovasc Diabetol. 2025;24(1):243. https://doi.org/10.1186/s12933-025-02771-z.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Xu BT, Wan SR, Wu Q, Xing YH, He YQ, Huang W, et al. Bdh1 overexpression alleviates diabetic cardiomyopathy through inhibiting H3K9bhb-mediated transcriptional activation of LCN2. Cardiovasc Diabetol. 2025;24(1):101. https://doi.org/10.1186/s12933-025-02646-3.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Arnold Z, Dostal C, Szabó PL, Aykac I, Goncalves AIA, Sousa SL, et al. Tenascin-C drives cardiovascular dysfunction in a mouse model of diabetic cardiomyopathy. Cardiovasc Diabetol. 2025;24(1):235. https://doi.org/10.1186/s12933-025-02780-y.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mengozzi A, Armenia S, De Biase N, Punta LD, Cappelli F, Duranti E, et al. Circulating mitochondrial DNA signature in cardiometabolic patients. Cardiovasc Diabetol. 2025;24(1):106. https://doi.org/10.1186/s12933-025-02656-1.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Menghoum N, Badii MC, Leroy M, Parra M, Roy C, Lejeune S, et al. Exploring the impact of metabolic comorbidities on epicardial adipose tissue in heart failure with preserved ejection fraction. Cardiovasc Diabetol. 2025;24(1):134. https://doi.org/10.1186/s12933-025-02688-7.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shi Y, Zhao L, Wang J, Liu X, Bai Y, Cong H, et al. Empagliflozin protects against heart failure with preserved ejection fraction partly by inhibiting the senescence-associated STAT1-STING axis. Cardiovasc Diabetol. 2024;23(1):269. https://doi.org/10.1186/s12933-024-02366-0.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Marwick TH, Halabi A, Soh CH, Curtin A, Sherrif AG, Azad A, et al. Effects of dapagliflozin on the progression of left ventricular dysfunction in type 2 diabetes mellitus: a randomized controlled trial. Cardiovasc Diabetol. 2025;24(1):232. https://doi.org/10.1186/s12933-025-02796-4.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Guivala SJ, Bode KA, Okun JG, Kartal E, Schwedhelm E, Pohl LV, et al. Interactions between the gut microbiome, associated metabolites and the manifestation and progression of heart failure with preserved ejection fraction in ZSF1 rats. Cardiovasc Diabetol. 2024;23(1):299. https://doi.org/10.1186/s12933-024-02398-6.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar