Nicholls, R. J. & Cazenave, A. Sea-level rise and its impact on coastal zones. Science 328, 1517 (2010).


Google Scholar
 

Ranasinghe, R. impacts on open sandy coasts: a review. Earth-Sci. Rev. 160, 320–332 (2016).


Google Scholar
 

Boak, E. H. & Turner, I. L. Shoreline definition and detection: a review. J. Coast. Res. 688–703 (2005).

Nicholls, R. J., French, J. R. & van Maanen, B. Simulating decadal coastal morphodynamics. Geomorphology 256, 1–2 (2016).


Google Scholar
 

Frazer, L. N., Anderson, T. R. & Fletcher, C. H. Modeling storms improves estimates of long-term shoreline change. Geophys. Res. Lett. https://doi.org/10.1029/2009GL040061 (2009).

Woodroffe, C. et al. A framework for modelling the risks of climate-change impacts on Australian coasts. In Applied Studies in Climate Adaptation. 181–189 (2014).

Ranasinghe, R. et al. On the need for a new generation of coastal change models for the 21st century. Scientific Reports (2020).

Hans, H. Genesis: a generalized shoreline change numerical model. J. Coast. Res. 5, 1–27 (1989).


Google Scholar
 

Yates, M. L., Guza, R. T. & O’Reilly, W. C. Equilibrium shoreline response: observations and modeling. J. Geophys. Res.: Oceans https://doi.org/10.1029/2009JC005359 (2009).

Roelvink, D. J. & A. Reniers, A Guide To Modeling Coastal Morphology. 12, World Scientific. (2011).

Davidson, M. A., Splinter, K. D. & Turner, I. L. A simple equilibrium model for predicting shoreline change. Coast. Eng. 73, 191–202 (2013).


Google Scholar
 

Vitousek, S. et al. A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change. J. Geophys. Res.: Earth Surf. 122, 782–806 (2017).


Google Scholar
 

Robinet, A. et al. A reduced-complexity shoreline change model combining longshore and cross-shore processes: The LX-Shore model. Environ. Model. Softw. 109, 1–16 (2018).


Google Scholar
 

Jaramillo, C. et al. A shoreline evolution model for embayed beaches based on cross-shore, planform and rotation equilibrium models. Coast. Eng. 169, 103983 (2021).


Google Scholar
 

McCarroll, R. J. et al. A rules-based shoreface translation and sediment budgeting tool for estimating coastal change: ShoreTrans. Mar. Geol. 435, 106466 (2021).


Google Scholar
 

Gomez-de la Peña, E. et al. On the use of convolutional deep learning to predict shoreline change. Earth Surf. Dynam. 11, 1145–1160 (2023).


Google Scholar
 

Calcraft, K. et al. Do LSTM memory states reflect the relationships in reduced-complexity sandy shoreline models. Environ. Model. Softw. 183, 106236 (2025).


Google Scholar
 

Montaño, J. et al. A multiscale approach to shoreline prediction. Geophys. Res. Lett. 48, e2020GL090587 (2021).


Google Scholar
 

Cowell, P. & B. Thom, Morphodynamics of Coastal Evolution. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA (1994).

Hunt, E. et al. Shoreline modelling on timescales of days to decades. Camb. Prisms: Coast. Futures 1, e16 (2023).


Google Scholar
 

Vos, K. et al. Benchmarking satellite-derived shoreline mapping algorithms. Commun. Earth Environ. 4, 345 (2023).


Google Scholar
 

Collenteur, R. A. et al. Data-driven modelling of hydraulic-head time series: results and lessons learned from the 2022 groundwater time series modelling challenge. Hydrol. Earth Syst. Sci. 28, 5193–5208 (2024).


Google Scholar
 

Blanco, B. et al. Coastal Morphological Modelling For Decision-makers. Bristol, UK: Environment Agency (2019).

French, J. et al. Appropriate complexity for the prediction of coastal and estuarine geomorphic behaviour at decadal to centennial scales. Geomorphology 256, 3–16 (2016).


Google Scholar
 

Montaño, J. et al. Blind testing of shoreline evolution models. Sci. Rep. 10, 2137 (2020).


Google Scholar
 

Kollet, S. et al. The integrated hydrologic model intercomparison project, IH-MIP2: a second set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resour. Res. 53, 867–890 (2017).


Google Scholar
 

Splinter, K. D. & Coco, G. Challenges and opportunities in coastal shoreline prediction. Front. Mar. Sci. 8, 788657 (2021).


Google Scholar
 

D’Anna, M. et al. Uncertainties in shoreline projections to 2100 at Truc Vert Beach (France): role of sea-level rise and equilibrium model assumptions. J. Geophys. Res.: Earth Surf. 126, e2021JF006160 (2021).


Google Scholar
 

Toimil, A. et al. Visualising the uncertainty cascade in multi-ensemble probabilistic coastal erosion projections. Front. Mar. Sci. 8, 683535 (2021).


Google Scholar
 

Ibaceta, R. et al. Improving multi-decadal coastal shoreline change predictions by including model parameter non-stationarity. Front. Mar. Sci. 9, 1012041 (2022).


Google Scholar
 

Ibaceta, R. et al. Enhanced coastal shoreline modeling using an ensemble Kalman filter to include nonstationarity in future wave climates. Geophys. Res. Lett. 47, e2020GL090724 (2020).


Google Scholar
 

Schepper, R. et al. Modelling cross-shore shoreline change on multiple timescales and their interactions. J. Mar. Sci. Eng. 9, 582 (2021).


Google Scholar
 

Vos, K. et al. CoastSat: a Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery. Environ. Model. Softw. 122, 104528 (2019).


Google Scholar
 

Vitousek, S. et al. A model integrating satellite-derived shoreline observations for predicting fine-scale shoreline response to waves and sea-level rise across large coastal regions. J. Geophys. Res.: Earth Surf. 128, e2022JF006936 (2023).


Google Scholar
 

Mao, Y. et al. Determining the shoreline retreat rate of Australia using discrete and hybrid Bayesian networks. J. Geophys. Res.: Earth Surf. 126, e2021JF006112 (2021).


Google Scholar
 

Vitousek, S. et al. Scalable, data-assimilated models predict large-scale shoreline response to waves and sea-level rise. Sci. Rep. 14, 28029 (2024).


Google Scholar
 

Azorakos, G. et al. Satellite-derived equilibrium shoreline modelling at a high-energy meso-macrotidal beach. Coast. Eng. 191, 104536 (2024).


Google Scholar
 

Alvarez-Cuesta, M., Toimil, A. & Losada, I. J. Which data assimilation method to use and when: unlocking the potential of observations in shoreline modelling. Environ. Res. Lett. 19, 044023 (2024).


Google Scholar
 

Antolínez, J. A. A. et al. Predicting climate-driven coastlines with a simple and efficient multiscale model. J. Geophys. Res.: Earth Surf. 124, 1596–1624 (2019).


Google Scholar
 

Roelvink, D. et al. Efficient modeling of complex sandy coastal evolution at monthly to century time scales. Front. Mar. Sci. 7, 535 (2020).


Google Scholar
 

Mao, Y. et al. ShoreShop 2.0: Advancements in Shoreline Change Prediction Models. https://doi.org/10.5281/zenodo.15259391 (2025).

Müllner, D. et al. Modern hierarchical, agglomerative clustering algorithms. arXiv preprint https://doi.org/10.48550/arXiv.1109.2378 (2011).

Miller, J. K. & Dean, R. G. A simple new shoreline change model. Coast. Eng. 51, 531–556 (2004).


Google Scholar
 

Coastal Engineering Research Center (CERC), Shore protection manual. US Army Corps of Engineers, Washington DC, Vol. I, 597, II, 603, 37–53 (1984).

Wright, L. D. & Short, A. D. Morphodynamic variability of surf zones and beaches: a synthesis. Mar. Geol. 56, 93–118 (1984).


Google Scholar
 

Lim, C., González, M. & Lee, J.-L. Estimating cross-shore and longshore sediment transport from shoreline observation data. Appl. Ocean Res. 153, 104288 (2024).


Google Scholar
 

Splinter, K. D. et al. A generalized equilibrium model for predicting daily to interannual shoreline response. J. Geophys. Res.: Earth Surf. 119, 1936–1958 (2014).


Google Scholar
 

Bell, B. et al. The ERA5 global reanalysis: Preliminary extension to 1950. Q. J. R. Meteorological Soc. 147, 4186–4227 (2021).


Google Scholar
 

Taylor, K. E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res.: Atmospheres 106, 7183–7192 (2001).


Google Scholar
 

Duveiller, G., Fasbender, D. & Meroni, M. Revisiting the concept of a symmetric index of agreement for continuous datasets. Sci. Rep. 6, 19401 (2016).


Google Scholar
 

Veličković, P. et al. Graph attention networks. In International Conference on Learning Representations (2018)

Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).


Google Scholar
 

Doherty, Y. et al. A Python toolkit to monitor sandy shoreline change using high-resolution PlanetScope cubesats. Environ. Model. Softw. 157, 105512 (2022).


Google Scholar
 

Turner, I. L. et al. A multi-decade dataset of monthly beach profile surveys and inshore wave forcing at Narrabeen, Australia. Sci. Data 3, 160024 (2016).


Google Scholar
 

Castelle, B. et al. 16 years of topographic surveys of rip-channelled high-energy meso-macrotidal sandy beach. Sci. Data 7, 410 (2020).


Google Scholar
 

McCarroll, R. J. et al. Coastal survey data for Perranporth beach and Start Bay in southwest England (2006–2021). Scientific. Data 10, 258 (2023).


Google Scholar
 

Banno, M. et al. Long-term observations of beach variability at Hasaki. Jpn. J. Mar. Sci. Eng. 8, 871 (2020).


Google Scholar
 

Holman, R. A. & Stanley, J. The history and technical capabilities of Argus. Coast. Eng. 54, 477–491 (2007).


Google Scholar
 

Garcia, D. Robust smoothing of gridded data in one and higher dimensions with missing values. Comput. Stat. Data Anal. 54, 1167–1178 (2010).


Google Scholar
 

Garcia, D. et al. smoothn, MATLAB Central File Exchange. https://www.mathworks.com/matlabcentral/fileexchange/25634-smoothn. Retrieved July 21, 2025.

Repina, O. et al. Evaluating five shoreline change models against 40 years of field survey data at an embayed sandy beach. Coast. Eng. 199, 104738 (2025).


Google Scholar
 

Chataigner, T. et al. Sensitivity of a one-line longshore shoreline change model to the mean wave direction. Coast. Eng. 172, 104025 (2022).


Google Scholar
 

Klotz, A. N. et al. Nearshore satellite-derived bathymetry from a single-pass satellite video: Improvements from adaptive correlation window size and modulation transfer function. Remote Sens. Environ. 315, 114411 (2024).


Google Scholar
 

Daly, C. et al. The new era of regional coastal bathymetry from space: a showcase for West Africa using optical Sentinel-2 imagery. Remote Sens. Environ. 278, 113084 (2022).


Google Scholar
 

Bergsma, E. W. J. et al. Coastal morphology from space: a showcase of monitoring the topography-bathymetry continuum. Remote Sens. Environ. 261, 112469 (2021).


Google Scholar
 

Ma, Y. et al. Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2 imagery datasets. Remote Sens. Environ. 250, 112047 (2020).


Google Scholar
 

Laignel, B. et al. Observation of the coastal areas, estuaries and deltas from space. Surv. Geophys. 44, 1309–1356 (2023).


Google Scholar
 

de Michele, M. et al. Shallow bathymetry from multiple Sentinel 2 images via the joint estimation of wave celerity and wavelength. Remote Sens. 13, 2149 (2021).


Google Scholar
 

Bruun, P. Sea-level rise as a cause of shore erosion. J. Waterw. Harb. Div. 88, 117–132 (1962).


Google Scholar
 

Cooper, J. A. G. & Pilkey, O. H. Sea-level rise and shoreline retreat: time to abandon the Bruun Rule. Glob. Planet. change 43, 157–171 (2004).


Google Scholar
 

Davidson-Arnott, R. G. D. & Bauer, B. O. Controls on the geomorphic response of beach-dune systems to water level rise. J. Gt. Lakes Res. 47, 1594–1612 (2021).


Google Scholar
 

D’Anna, M. et al. Reinterpreting the Bruun rule in the context of equilibrium shoreline models. J. Marine Sci. Eng. https://doi.org/10.3390/jmse9090974 (2021).

Calkoen, F. R. et al. Enabling coastal analytics at planetary scale. Environ. Model. Softw. 183, 106257 (2025).


Google Scholar
 

Robinet, A. et al. Controls of local geology and cross-shore/longshore processes on embayed beach shoreline variability. Mar. Geol. 422, 106118 (2020).


Google Scholar
 

Harley, M. D. et al. Single extreme storm sequence can offset decades of shoreline retreat projected to result from sea-level rise. Commun. Earth Environ. 3, 112 (2022).


Google Scholar
 

Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorological Soc. 146, 1999–2049 (2020).


Google Scholar
 

Lewis, S. et al. ACCESS1-0 climate model output prepared for the Coupled Model Intercomparison Project Phase 5 (CMIP5) historical experiment, r2i1p1 ensemble., ARC Centre of Excellence for Climate System Science. https://doi.org/10.1594/WDCC/CMIP5.CSA0hi (2013).

Cagigal, L. et al. BinWaves: An additive hybrid method to downscale directional wave spectra to nearshore areas. Ocean Model. 189, 102346 (2024).


Google Scholar
 

Harrison, A. et al. NSW beach photogrammetry: A new online database and toolbox, in Australasian Coasts & Ports 2017: Working with Nature: Working with Nature. Engineers Australia, PIANC Australia and Institute of Professional Engineers. 565–571 (2017).

Carrere, L. et al. FES2014, a new tidal model–Validation results and perspectives for improvements, presentation to ESA Living Planet Conference. Prague. (2016).

Permanent Service for Mean Sea Level (PSMSL), Tide Gauge Data. http://www.psmsl.org/data/obtaining/ (2024).

Garner, G. G. et al. IPCC AR6 Sea Level Projections. https://doi.org/10.5281/zenodo.6382554. (2021).

Hallermeier, R. J. A profile zonation for seasonal sand beaches from wave climate. Coast. Eng. 4, 253–277 (1980).


Google Scholar
 

Vos, K. et al. Beach Slopes From Satellite-Derived Shorelines. Geophys. Res. Lett. 47, e2020GL088365 (2020).


Google Scholar
 

Vos, K. et al. Beach-face slope dataset for Australia. Earth Syst. Sci. Data 14, 1345–1357 (2022).


Google Scholar
 

Harley, M. D. et al. A reevaluation of coastal embayment rotation: The dominance of cross-shore versus alongshore sediment transport processes, Collaroy-Narrabeen Beach, southeast Australia. J. Geophys. Res.: Earth Surf. 116. https://doi.org/10.1029/2011JF001989 (2011).

Harley, M. D., Turner, I. L. & Short, A. D. New insights into embayed beach rotation: the importance of wave exposure and cross-shore processes. J. Geophys. Res.: Earth Surf. 120, 1470–1484 (2015).


Google Scholar
 

Cannon, A. J. Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables. Clim. Dyn. 50, 31–49 (2018).


Google Scholar
 

Holgate, S. J. et al. New data systems and products at the permanent service for mean sea level. J. Coast. Res. 29, 493–504 (2013).


Google Scholar
 

State Government of NSW and NSW Department of Climate Change, Energy, the Environment and Water. NSW Marine LiDAR Topo-Bathy 2018 Geotif, accessed from The Sharing and Enabling Environmental Data Portal [https://datasets.seed.nsw.gov.au/dataset/45089194-912d-4ecf-8200-969e0796afee], date accessed 2025-07-21 (2019).

Ward Jr, J. H. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 58, 236–244 (1963).


Google Scholar