Meng, Y., Broom, M. & Li, A. Impact of misinformation in the evolution of collective cooperation on networks. J. R. Soc. Interface 20, 20230295 (2023).
Kopp, C., Korb, K. B. & Mills, B. I. Information-theoretic models of deception: modelling cooperation and diffusion in populations exposed to ‘fake news’. PLoS ONE 13, e0207383 (2018).
Levin, S. A. & Weber, E. U. Polarization and the psychology of collectives. Perspect. Psychol. Sci. 19, 335–343 (2024).
Loomba, S., de Figueiredo, A., Piatek, S. J., de Graaf, K. & Larson, H. J. Measuring the impact of COVID-19 vaccine misinformation on vaccination intent in the UK and USA. Nat. Hum. Behav. 5, 337–348 (2021).
Abascal, M., Huang, T. J. & Tran, V. C. Intervening in anti-immigrant sentiments: the causal effects of factual information on attitudes toward immigration. Ann. Am. Acad. Pol. Soc. Sci. 697, 174–191 (2021).
Hornsey, M. J., Harris, E. A., Bain, P. G. & Fielding, K. S. Meta-analyses of the determinants and outcomes of belief in climate change. Nat. Clim. Change 6, 622–626 (2016).
Van der Linden, S., Leiserowitz, A. & Maibach, E. The gateway belief model: a large-scale replication. J. Environ. Psychol. 62, 49–58 (2019).
Lewandowsky, S. Climate change disinformation and how to combat it. Annu. Rev. Public Health 42, 1–21 (2021).
Van der Linden, S. L., Leiserowitz, A. A., Feinberg, G. D. & Maibach, E. W. The scientific consensus on climate change as a gateway belief: experimental evidence. PLoS ONE 10, e0118489 (2015).
Goldberg, M. H., van der Linden, S., Maibach, E. & Leiserowitz, A. Discussing global warming leads to greater acceptance of climate science. Proc. Natl Acad. Sci. USA 116, 14804–14805 (2019).
Većkalov, B. et al. A 27-country test of communicating the scientific consensus on climate change. Nat. Hum. Behav. 8, 1892–1905 (2024).
Bago, B., Rand, D. G. & Pennycook, G. Reasoning about climate change. Proc. Natl Acad. Sci. USA 2, pgad100 (2023).
Feldman, L. & Hart, P. S. Broadening exposure to climate change news? How framing and political orientation interact to influence selective exposure. J. Commun. 68, 503–524 (2018).
Peterson, E. & Iyengar, S. Partisan gaps in political information and information seeking behavior: motivated reasoning or cheerleading? Am. J. Political Sci. 65, 133–147.
Areni, C. S. Motivated reasoning and climate change: comparing news sources, politicization, intensification, and qualification in denier versus believer subreddit comments. Appl. Cogn. Psychol. 38, e4167 (2024).
Newman, T. P., Nisbet, E. C. & Nisbet, M. C. Climate change, cultural cognition, and media effects: worldviews drive news selectivity, biased processing, and polarized attitudes. Pub. Understand. Sci. 27, 985–1002 (2018).
Bolin, J. L. & Hamilton, L. C. The news you choose: news media preferences amplify views on climate change. Environ. Polit. 27, 455–476 (2018).
Wang, Y. & Jaidka, K. Confirmation bias in seeking climate information: employing relative search volume to predict partisan climate opinions. Soc. Sci. Comput. Rev. 42, 4–24 (2024).
Sweeny, K., Melnyk, D., Miller, W. & Shepperd, J. A. Information avoidance: who, what, when, and why. Rev. Gen. Psychol. 14, 340–353 (2010).
Bénabou, R. & Tirole, J. Identity, morals, and taboos: beliefs as assets. Q. J. Econ. 126, 805–855 (2011).
Golman, R., Hagmann, D. & Loewenstein, G. Information avoidance. J. Econ. Lit. 55, 96–135 (2017).
Andersen, K., Toff, B. & Ytre-Arne, B. Introduction: what we (don’t) know about news avoidance. Journal. Stud. 25, 1367–1384 (2024).
Skovsgaard, M. & Andersen, K. Conceptualizing news avoidance: towards a shared understanding of different causes and potential solutions. Journal. Stud. 21, 459–476 (2020).
Mangold, F., Schoch, D. & Stier, S. Ideological self-selection in online news exposure: evidence from europe and the us. Sci. Adv. 10, eadg9287 (2024).
Hickman, C. et al. Climate anxiety in children and young people and their beliefs about government responses to climate change: a global survey. Lancet Planet. Health 5, e863–e873 (2021).
Bayes, R. & Druckman, J. N. Motivated reasoning and climate change. Curr. Opin Behav. Sci. 42, 27–35 (2021).
Newman, N., Fletcher, R., Eddy, K., Robertson, C. T. & Nielsen, R. K. Reuters Institute Digital News Report 2023. Tech. Rep. (Reuters Institute for the Study of Journalism, 2023); https://reutersinstitute.politics.ox.ac.uk/digital-news-report/2023
Chinn, S., Hart, P. S. & Soroka, S. Politicization and polarization in climate change news content, 1985–2017. Science Communication 42, 112–129 (2020).
Malka, A., Krosnick, J. A. & Langer, G. The association of knowledge with concern about global warming: trusted information sources shape public thinking. Risk Anal. 29, 633–647 (2009).
Feldman, L., Myers, T. A., Hmielowski, J. D. & Leiserowitz, A. The mutual reinforcement of media selectivity and effects: testing the reinforcing spirals framework in the context of global warming. J. Commun. 64, 590–611 (2014).
Edenbrandt, A. K., Lagerkvist, C. J. & Nordström, J. Interested, indifferent or active information avoiders of carbon labels: cognitive dissonance and ascription of responsibility as motivating factors. Food Policy 101, 102036 (2021).
d’Adda, G., Gao, Y., Golman, R. & Tavoni, M. Strategic information avoidance, belief manipulation and the effectiveness of green nudges. Ecol. Econ. 222, 108191 (2024).
Sharot, T. & Sunstein, C. R. How people decide what they want to know. Nat. Hum. Behav. 4, 14–19 (2020).
Dorison, C. A., Minson, J. A. & Rogers, T. Selective exposure partly relies on faulty affective forecasts. Cognition 188, 98–107 (2019).
Newman, N., Fletcher, R., Schulz, A., Simge, A. & Nielsen, R. K. Reuters Institute Digital News Report 2020. Tech. Rep. (Reuters Institute for the Study of Journalism, 2020); https://reutersinstitute.politics.ox.ac.uk/sites/default/files/2020-06/DNR_2020_FINAL.pdf
Newman, N., Fletcher, R., Eddy, K., Robertson, C. T. & Nielsen, R. K. Reuters Institute Digital News Report 2022. Tech. Rep. (Reuters Institute for the Study of Journalism, 2022); https://reutersinstitute.politics.ox.ac.uk/digital-news-report/2022
González-Bailón, S. et al. Asymmetric ideological segregation in exposure to political news on facebook. Science 381, 392–398 (2023).
Iyengar, S. & Hahn, K. S. Red media, blue media: evidence of ideological selectivity in media use. J. Commun. 59, 19–39 (2009).
Petersen, A. M., Vincent, E. M. & Westerling, A. L. Discrepancy in scientific authority and media visibility of climate change scientists and contrarians. Nat. Commun. 10, 3502 (2019).
Koehler, D. J. Can journalistic ‘false balance’ distort public perception of consensus in expert opinion? J. Exp. Psychol. Appl. 22, 24 (2016).
Pennycook, G., McPhetres, J., Zhang, Y., Lu, J. G. & Rand, D. G. Fighting COVID-19 misinformation on social media: experimental evidence for a scalable accuracy-nudge intervention. Psychol. Sci. 31, 770–780 (2020).
Pennycook, G. et al. Shifting attention to accuracy can reduce misinformation online. Nature 592, 590–595 (2021).
Frimer, J. A., Skitka, L. J. & Motyl, M. Liberals and conservatives are similarly motivated to avoid exposure to one another’s opinions. J. Exper. Soc. Psychol. 72, 1–12 (2017).
Nyhan, B. et al. Like-minded sources on facebook are prevalent but not polarizing. Nature 620, 137–144 (2023).
Robertson, R. E. et al. Users choose to engage with more partisan news than they are exposed to on Google search. Nature 618, 342–348 (2023).
Janét, K., Richards, O. & Landrum, A. R. Headline format influences evaluation of, but not engagement with, environmental news. Journal. Pract. 16, 35–55 (2022).
Feldman, L. & Hart, P. S. Upping the ante? The effects of ‘emergency’ and ‘crisis’ framing in climate change news. Clim. Change 169, 10 (2021).
Chapman, D. A., Lickel, B. & Markowitz, E. M. Reassessing emotion in climate change communication. Nat. Clim. Change 7, 850–852 (2017).
Robertson, C. E. et al. Negativity drives online news consumption. Nat. Hum. Behav. 7, 812–822 (2023).
Zhang, M. et al. Negative news headlines are more attractive: negativity bias in online news reading and sharing. Curr. Psychol. 43, 30156–30169 (2024).
Vlasceanu, M. et al. Addressing climate change with behavioral science: a global intervention tournament in 63 countries. Sci. Adv. 10, eadj5778 (2024).
Maertens, R., Anseel, F. & van der Linden, S. Combatting climate change misinformation: evidence for longevity of inoculation and consensus messaging effects. J. Environ. Psychol. 70, 101455 (2020).
Nyhan, B., Porter, E. & Wood, T. J. Time and skeptical opinion content erode the effects of science coverage on climate beliefs and attitudes. Proc. Natl Acad. Sci. USA 119, e2122069119 (2022).
Dubey, A. et al. The Llama3 herd of models. Preprint at https://doi.org/10.48550/arXiv.2407.21783 (2024).
Howe, P. D., Mildenberger, M., Marlon, J. R. & Leiserowitz, A. Geographic variation in opinions on climate change at state and local scales in the usa. Nat. Clim. Change 5, 596–603 (2015).
Marlon, J. R. et al. Change in us state-level public opinion about climate change: 2008–2020. Environ. Res. Lett. 17, 124046 (2022).
Capraro, V. et al. The impact of generative artificial intelligence on socioeconomic inequalities and policy making. PNAS Nexus 3, pgae191 (2024).
Spitale, G., Biller-Andorno, N. & Germani, F. AI model GPT-3 (dis)informs us better than humans. Sci. Adv. 9, eadh1850 (2023).
Kidd, C. & Birhane, A. How AI can distort human beliefs. Science 380, 1222–1223 (2023).
Shin, S. Y. & Lee, J. The effect of deepfake video on news credibility and corrective influence of cost-based knowledge about deepfakes. Digit. Journal. 10, 412–432 (2022).
Simchon, A., Edwards, M. & Lewandowsky, S. The persuasive effects of political microtargeting in the age of generative artificial intelligence. Proc. Natl Acad. Sci. USA 3, 035 (2024).
Augenstein, I. et al. Factuality challenges in the era of large language models and opportunities for fact-checking. Nat. Mach. Intell. 6, 852–863 (2024).
Costello, T. H., Pennycook, G. & Rand, D. G. Durably reducing conspiracy beliefs through dialogues with AI. Science 385, eadq1814 (2024).
Bago, B. & Bonnefon, J.-F. Generative AI as a tool for truth. Science 385, 1164–1165 (2024).
Tessler, M. H. et al. AI can help humans find common ground in democratic deliberation. Science 386, eadq2852 (2024).
Dörr, K. N. Mapping the field of algorithmic journalism. Digit. Journal. 4, 700–722 (2016).
Diakopoulos, N. Automating the News: How Algorithms Are Rewriting the Media (Harvard Univ. Press, 2019).
Cools, H. & Diakopoulos, N. Uses of generative AI in the newsroom: mapping journalists’ perceptions of perils and possibilities. Journal. Pract. 1–19 (2024).
Guenther, L., Kunert, J. & Goodwin, B. ‘Away from this duty of chronicler and towards the unicorn’: how German science journalists assess their future with (generative) artificial intelligence. J. Sci. Commun. 24, A06 (2025).
Opdahl, A. L. et al. Trustworthy journalism through AI. Data Knowl. Eng. 146, 102182 (2023).
Nishal, S. & Diakopoulos, N. Envisioning the applications and implications of generative AI for news media. Preprint at https://doi.org/10.48550/arXiv.2402.18835 (2024).
Nishal, S., Sinchai, J. & Diakopoulos, N. Understanding practices around computational news discovery tools in the domain of science journalism. Proc. ACM Hum. Comput. Interact. 8, 1–36 (2024).
Ren, J., Zhao, Y., Vu, T., Liu, P. J. & Lakshminarayanan, B. In Proc. Machine Learning Research 49–64 (PMLR, 2023).
Kadavath, S. et al. Language models (mostly) know what they know. Preprint at https://doi.org/10.48550/arXiv.2207.05221 (2022).
Gomila, R. Logistic or linear? estimating causal effects of experimental treatments on binary outcomes using regression analysis. J. Exp. Psychol. Gen. 150, 700 (2021).
News personalization. AsPredicted https://aspredicted.org/wfvn-c2tg.pdf (2025).
Bago, B., Muller, P., Bonnefon, J.-F. Dataset and analysis for using generative AI to increase skeptics’ engagement with climate science. Zenodo https://doi.org/10.5281/zenodo.16755109 (2025).