Pryhuber, G. S. et al. Prematurity and respiratory outcomes program (PROP): study protocol of a prospective multicenter study of respiratory outcomes of preterm infants in the United States. BMC Pediatrics 15, 37 (2015).

PubMed 
PubMed Central 

Google Scholar
 

Bell, E. F. et al. Mortality, in-hospital morbidity, care practices, and 2-year outcomes for extremely preterm infants in the US, 2013–2018. JAMA 327, 248–263 (2022).

PubMed 

Google Scholar
 

Budinger, G. R. et al. Epithelial cell death is an important contributor to oxidant-mediated acute lung injury. Am. J. Respir. Crit. Care Med. 183, 1043–1054 (2011).

PubMed 

Google Scholar
 

Thebaud, B. et al. Bronchopulmonary dysplasia. Nat. Rev. Dis. Primers 5, 78 (2019).

PubMed 
PubMed Central 

Google Scholar
 

Collaco, J. M., Eldredge, L. C. & McGrath-Morrow, S. A. Long-term pulmonary outcomes in BPD throughout the life course. J. Perinatal. 10.1038/s41372-024-01957-9 (2024).

Hilgendorff, A. et al. Association of polymorphisms in the mannose-binding lectin gene and pulmonary morbidity in preterm infants. Genes Immun. 8, 671–677 (2007).

CAS 
PubMed 

Google Scholar
 

Jagadeesh, K. A. et al. Identifying disease-critical cell types and cellular processes by integrating single-cell RNA-sequencing and human genetics. Nat. Genet. 54, 1479–1492 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bartalesi, B. et al. Different lung responses to cigarette smoke in two strains of mice sensitive to oxidants. Eur. Respir. J. 25, 15–22 (2005).

CAS 
PubMed 

Google Scholar
 

De Simone, M. et al. Mapping genetic determinants of host susceptibility to Pseudomonas aeruginosa lung infection in mice. BMC Genomics 17, 351 (2016).

PubMed 
PubMed Central 

Google Scholar
 

Whitehead, G. S., Burch, L. H., Berman, K. G., Piantadosi, C. A. & Schwartz, D. A. Genetic basis of murine responses to hyperoxia-induced lung injury. Immunogenetics 58, 793–804 (2006).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sajti, E. et al. Transcriptomic and epigenetic mechanisms underlying myeloid diversity in the lung. Nat. Immunol. 21, 221–231 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sun, X. et al. A census of the lung: CellCards from LungMAP. Dev. Cell 57, 112–145 (2022).

CAS 
PubMed 

Google Scholar
 

Cantu, A. et al. Remarkable sex-specific differences at single-cell resolution in neonatal hyperoxic lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 324, L5–L31 (2023).

CAS 
PubMed 

Google Scholar
 

Hurskainen, M. et al. Single cell transcriptomic analysis of murine lung development on hyperoxia-induced damage. Nat. Commun. 12, 1565 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ulland, T. K. & Colonna, M. TREM2 – a key player in microglial biology and Alzheimer disease. Nat. Rev. Neurol. 14, 667–675 (2018).

CAS 
PubMed 

Google Scholar
 

Sharif, O. et al. The triggering receptor expressed on myeloid cells 2 inhibits complement component 1q effector mechanisms and exerts detrimental effects during pneumococcal pneumonia. PLoS Pathog. 10, e1004167 (2014).

PubMed 
PubMed Central 

Google Scholar
 

Wu, K. et al. TREM-2 promotes macrophage survival and lung disease after respiratory viral infection. J. Exp. Med. 212, 681–697 (2015).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bucova, M. et al. Diagnostic value of TREM-1 and TREM-2 expression in bronchoalveolar lavage fluid in sarcoidosis and other lung diseases. Bratisl. Lek. Listy 116, 707–713 (2015).

CAS 
PubMed 

Google Scholar
 

Tiono, J. et al. Mouse genetic background impacts susceptibility to hyperoxia-driven perturbations to lung maturation. Pediatr. Pulmonol. 54, 1060–1077 (2019).

PubMed 

Google Scholar
 

Rincon, M. & Irvin, C. G. Role of IL-6 in asthma and other inflammatory pulmonary diseases. Int J. Biol. Sci. 8, 1281–1290 (2012).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Eckle, T. et al. Identification of ectonucleotidases CD39 and CD73 in innate protection during acute lung injury. J. Immunol. 178, 8127–8137 (2007).

CAS 
PubMed 

Google Scholar
 

Bancalari, E. & Jain, D. Bronchopulmonary dysplasia: 50 years after the original description. Neonatology 115, 384–391 (2019).

PubMed 

Google Scholar
 

Leek, C. et al. Role of sex as a biological variable in neonatal alveolar macrophages. Redox Biol. 75, 103296 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, Q., Brown, J. B., Huang, H. & Bickel, P. J. Measuring reproducibility of high-throughput experiments. Ann. Appl. Stat. 5, 1752–1779 (2011).


Google Scholar
 

Wolf, D. & Goff, S. P. Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature 458, 1201–1204 (2009).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lin, K. C., Park, H. W. & Guan, K. L. Regulation of the Hippo pathway transcription factor TEAD. Trends Biochem. Sci. 42, 862–872 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

O’Reilly, M. A. DNA damage and cell cycle checkpoints in hyperoxic lung injury: braking to facilitate repair. Am. J. Physiol. Lung Cell. Mol. Physiol. 281, L291–L305 (2001).

PubMed 

Google Scholar
 

Chao, C., Saito, S., Anderson, C. W., Appella, E. & Xu, Y. Phosphorylation of murine p53 at ser-18 regulates the p53 responses to DNA damage. Proc. Natl Acad. Sci. USA 97, 11936–11941 (2000).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Suchankova, M. et al. Triggering receptor expressed on myeloid cells-1 and 2 in bronchoalveolar lavage fluid in pulmonary sarcoidosis. Respirology 18, 455–462 (2013).

PubMed 

Google Scholar
 

Mass, E., Nimmerjahn, F., Kierdorf, K. & Schlitzer, A. Tissue-specific macrophages: how they develop and choreograph tissue biology. Nat. Rev. Immunol. 23, 563–579 (2023).

CAS 
PubMed 

Google Scholar
 

Kober, D. L. & Brett, T. J. TREM2-ligand interactions in health and disease. J. Mol. Biol. 429, 1607–1629 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shaw, G. M. & O’Brodovich, H. M. Progress in understanding the genetics of bronchopulmonary dysplasia. Semin. Perinatol. 37, 85–93 (2013).

PubMed 
PubMed Central 

Google Scholar
 

Blume, F. et al. Verification of immunology-related genetic associations in BPD supports ABCA3 and five other genes. Pediatr. Res. 92, 190–198 (2022).

CAS 
PubMed 

Google Scholar
 

Ambalavanan, N. et al. Integrated genomic analyses in bronchopulmonary dysplasia. J. Pediatrics 166, 531–537 e513 (2015).

CAS 

Google Scholar
 

Wang, H. et al. A genome-wide association study (GWAS) for bronchopulmonary dysplasia. Pediatrics 132, 290–297 (2013).

PubMed 
PubMed Central 

Google Scholar
 

Mahlman, M. et al. Genome-wide association study of bronchopulmonary dysplasia: a potential role for variants near the CRP gene. Sci. Rep. 7, 9271 (2017).

PubMed 
PubMed Central 

Google Scholar
 

Gavrili, S. et al. Association of C609T-inborn polymorphism of NAD(P)H: quinone oxidoreductase 1 with the risk of bronchopulmonary dysplasia in preterm neonates. Am. J. Perinatol. 33, 535–539 (2016).

PubMed 

Google Scholar
 

Sampath, V. et al. Antioxidant response genes sequence variants and BPD susceptibility in VLBW infants. Pediatr. Res. 77, 477–483 (2015).

CAS 
PubMed 

Google Scholar
 

Scaffa, A. et al. Single-cell transcriptomics reveals lasting changes in the lung cellular landscape into adulthood after neonatal hyperoxic exposure. Redox Biol. 48, 102091 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Guo, M. et al. Single cell RNA analysis identifies cellular heterogeneity and adaptive responses of the lung at birth. Nat. Commun. 10, 37 (2019).

PubMed 
PubMed Central 

Google Scholar
 

Boutelle, A. M. & Attardi, L. D. p53 and tumor suppression: it takes a network. Trends Cell Biol. 31, 298–310 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bowen, M. E. & Attardi, L. D. The role of p53 in developmental syndromes. J. Mol. Cell. Biol. 11, 200–211 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

O’Reilly, M. A., Staversky, R. J., Stripp, B. R. & Finkelstein, J. N. Exposure to hyperoxia induces p53 expression in mouse lung epithelium. Am. J. Respir. Cell Mol. Biol. 18, 43–50 (1998).

PubMed 

Google Scholar
 

Yao, H. et al. Timing and cell specificity of senescence drives postnatal lung development and injury. Nat. Commun. 14, 273 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bowen, M. E. et al. The spatiotemporal pattern and intensity of p53 activation dictates phenotypic diversity in p53-driven developmental syndromes. Dev. Cell 50, 212–228 e216 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Levine, A. J. P53 and the immune response: 40 years of exploration—a plan for the future. Int. J. Mol. Sci. 21, 541 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Werness, B. A., Levine, A. J. & Howley, P. M. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248, 76–79 (1990).

CAS 
PubMed 

Google Scholar
 

Rivas, C., Aaronson, S. A. & Munoz-Fontela, C. Dual role of p53 in innate antiviral immunity. Viruses 2, 298–313 (2010).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Menendez, D. et al. The Toll-like receptor gene family is integrated into human DNA damage and p53 networks. PLoS Genet. 7, e1001360 (2011).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mascharak, S. et al. Preventing Engrailed-1 activation in fibroblasts yields wound regeneration without scarring. Science 372, eaba2374 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mascharak, S. et al. Desmoplastic stromal signatures predict patient outcomes in pancreatic ductal adenocarcinoma. Cell Rep. Med. 4, 101248 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ruifrok, A. C., Katz, R. L. & Johnston, D. A. Comparison of quantification of histochemical staining by hue-saturation-intensity (HSI) transformation and color-deconvolution. Appl. Immunohistochem. Mol. Morphol. 11, 85–91 (2003).

CAS 
PubMed 

Google Scholar
 

Ruifrok, A. C. & Johnston, D. A. Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. Histol. 23, 291–299 (2001).

CAS 
PubMed 

Google Scholar
 

Wang, L. & Mao, Q. Probabilistic dimensionality reduction via structure learning. IEEE Trans. Pattern Anal. Mach. Intell. 41, 205–219 (2019).

PubMed 

Google Scholar
 

Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).

PubMed 
PubMed Central 

Google Scholar
 

Abe, Y. et al. Histone demethylase JMJD1A coordinates acute and chronic adaptation to cold stress via thermogenic phospho-switch. Nat. Commun. 9, 1566 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Gosselin, D. et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159, 1327–1340 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Heinz, S. et al. Transcription elongation can affect genome 3D structure. Cell 174, 1522–1536.e1522 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

CAS 
PubMed 

Google Scholar
 

Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

PubMed 
PubMed Central 

Google Scholar
 

Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).

CAS 
PubMed 
PubMed Central 

Google Scholar