Mensah GA, Fuster V, Murray CJL, Roth GA. Global burden of cardiovascular diseases and risks, 1990–2022. J Am Coll Cardiol. 2023;82(25):2350–473.
Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ, Benziger CP, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76(25):2982–3021.
Chong B, Jayabaskaran J, Jauhari SM, Chan SP, Goh R, Kueh MTW, Li H, Chin YH, Kong G, Anand VV et al. Global burden of cardiovascular diseases: projections from 2025 to 2050. Eur J Prev Cardiol. 2024.
Powell-Wiley TM, Poirier P, Burke LE, Després JP, Gordon-Larsen P, Lavie CJ, Lear SA, Ndumele CE, Neeland IJ, Sanders P, et al. Obesity and cardiovascular disease: a scientific statement from the American heart association. Circulation. 2021;143(21):e984–1010.
Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet (London England). 2024;403(10431):1027–50.
Bray GA, Beyond BMI. Nutrients 2023;15(10).
Rubino F, Cummings DE, Eckel RH, Cohen RV, Wilding JPH, Brown WA, Stanford FC, Batterham RL, Farooqi IS, Farpour-Lambert NJ, et al. Definition and diagnostic criteria of clinical obesity. Lancet Diabetes Endocrinol. 2025;13(3):221–62.
Hill MA, Yang Y, Zhang L, Sun Z, Jia G, Parrish AR, Sowers JR. Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metab Clin Exp. 2021;119:154766.
Liu X, Tan Z, Huang Y, Zhao H, Liu M, Yu P, Ma J, Zhao Y, Zhu W, Wang J. Relationship between the triglyceride-glucose index and risk of cardiovascular diseases and mortality in the general population: a systematic review and meta-analysis. Cardiovasc Diabetol. 2022;21(1):124.
Tao LC, Xu JN, Wang TT, Hua F, Li JJ. Triglyceride-glucose index as a marker in cardiovascular diseases: landscape and limitations. Cardiovasc Diabetol. 2022;21(1):68.
Xia X, Chen S, Tian X, Xu Q, Zhang Y, Zhang X, Li J, Wu S, Wang A. Association of triglyceride-glucose index and its related parameters with atherosclerotic cardiovascular disease: evidence from a 15-year follow-up of Kailuan cohort. Cardiovasc Diabetol. 2024;23(1):208.
Dang K, Wang X, Hu J, Zhang Y, Cheng L, Qi X, Liu L, Ming Z, Tao X, Li Y. The association between triglyceride-glucose index and its combination with obesity indicators and cardiovascular disease: NHANES 2003–2018. Cardiovasc Diabetol. 2024;23(1):8.
Li C, Zhang Z, Luo X, Xiao Y, Tu T, Liu C, Liu Q, Wang C, Dai Y, Zhang Z, et al. The triglyceride-glucose index and its obesity-related derivatives as predictors of all-cause and cardiovascular mortality in hypertensive patients: insights from NHANES data with machine learning analysis. Cardiovasc Diabetol. 2025;24(1):47.
Huang Y, Zhou Y, Xu Y, Wang X, Zhou Z, Wu K, Meng Q, Wang L, Yang Y, Gao H, et al. Inflammatory markers link triglyceride-glucose index and obesity indicators with adverse cardiovascular events in patients with hypertension: insights from three cohorts. Cardiovasc Diabetol. 2025;24(1):11.
Zhang Q, Xiao S, Jiao X, Shen Y. The triglyceride-glucose index is a predictor for cardiovascular and all-cause mortality in CVD patients with diabetes or pre-diabetes: evidence from NHANES 2001–2018. Cardiovasc Diabetol. 2023;22(1):279.
Wei X, Min Y, Song G, Ye X, Liu L. Association between triglyceride-glucose related indices with the all-cause and cause-specific mortality among the population with metabolic syndrome. Cardiovasc Diabetol. 2024;23(1):134.
Zhang H, Tu Z, Liu S, Wang J, Shi J, Li X, Shi R, Chen M, Yue T, Luo S, et al. Association of different insulin resistance surrogates with all-cause and cardiovascular mortality among the population with cardiometabolic multimorbidity. Cardiovasc Diabetol. 2025;24(1):33.
Qiao Y, Wang Y, Chen C, Huang Y, Zhao C. Association between triglyceride-glucose (TyG) related indices and cardiovascular diseases and mortality among individuals with metabolic dysfunction-associated steatotic liver disease: a cohort study of UK biobank. Cardiovasc Diabetol. 2025;24(1):12.
Du L, Xu X, Wu Y, Yao H. Association between the triglyceride glucose index and cardiovascular mortality in obese population. Nutr Metabolism Cardiovasc Dis NMCD. 2024;34(1):107–11.
Chen W, Ding S, Tu J, Xiao G, Chen K, Zhang Y, Huang R, Liao Y. Association between the insulin resistance marker TyG index and subsequent adverse long-term cardiovascular events in young and middle-aged US adults based on obesity status. Lipids Health Dis. 2023;22(1):65.
Fu L, Xing Q, Wang X, Chen Y, Kong J, Li J, Yue B. Exploring the association between the TyG-WHtR index and the incidence of stroke in the obese population: based on NHANES data from 1998 to 2018. J Stroke Cerebrovasc Dis. 2025;34(2):108209.
Wang C, Wang J, Li X, Zhou P, Zhao X, Xin A, Liao G, Huang Y, Zhang Y. Associations between triglyceride-glucose index combined with waist circumference and heart failure in individuals with different body mass indices: a cross-sectional study using NHANES 2011–2020 data. Lipids Health Dis. 2025;24(1):87.
Chen Y, Wu W, Cai Z, Wu K, Zheng H, Fu P, Wang Y, Wang X, Lan Y, Chen S, et al. Association between triglyceride-glucose index and the risk of cardiometabolic diseases in metabolically healthy obese individuals: a prospective cohort study. Front Endocrinol. 2025;16:1524786.
Cho YK, Kim HS, Park JY, Lee WJ, Kim YJ, Jung CH. Triglyceride-glucose index predicts cardiovascular outcome in metabolically unhealthy obese population: a nationwide population-based cohort study. J Obes Metab Syndr. 2022;31(2):178–86.
Li GA, Huang J, Wang J, Fan L. Association between the triglyceride-glucose index and subclinical left ventricular systolic dysfunction in obese patients. Cardiovasc Diabetol. 2024;23(1):161.
Tang Y, Li L, Li J. Correlations of the triglyceride-glucose index and modified indices with arterial stiffness in overweight or obese adults. Front Endocrinol. 2024;15:1499120.
Li L, Pang S, Starnecker F, Mueller-Myhsok B, Schunkert H. Integration of a polygenic score into guideline-recommended prediction of cardiovascular disease. Eur Heart J. 2024;45(20):1843–52.
Li X, Ma H, Wang X, Feng H, Qi L. Life’s essential 8, genetic susceptibility, and incident cardiovascular disease: a prospective study. Arterioscler Thromb Vasc Biol. 2023;43(7):1324–33.
Li C, Meng X, Zhang J, Wang H, Lu H, Cao M, Sun S, Wang Y. Associations of metabolic changes and polygenic risk scores with cardiovascular outcomes and all-cause mortality across BMI categories: a prospective cohort study. Cardiovasc Diabetol. 2024;23(1):231.
Kurniawan AL, Hsu CY, Chao JC, Paramastri R, Lee HA, Jallow AW. Association of two indices of insulin resistance marker with abnormal liver function tests: a cross-sectional population study in Taiwanese adults. Med (Kaunas) 2021;58(1).
Liu S, Sun H, Liu J, Wang G. Accessing the relationship between six surrogate insulin resistance indexes and the incidence of rapid kidney function decline and the progression to chronic kidney disease among middle-aged and older adults in China: results from the China health and retirement longitudinal study. Diabetes Res Clin Pract. 2024;212:111705.
Sun X, Zhu J, Qian Z, Chen X, Zhang J, Ji C, Zhao L. A population-based study of the mediating role of WBC, NEUT and PLT in the relationship between triglyceride-glucose index and urinary albumin excretion. J Inflamm Res. 2024;17:10613–26.
Geng T, Zhu K, Lu Q, Wan Z, Chen X, Liu L, Pan A, Liu G. Healthy lifestyle behaviors, mediating biomarkers, and risk of microvascular complications among individuals with type 2 diabetes: a cohort study. PLoS Med. 2023;20(1):e1004135.
Tian Z, Yang L, Li Y, Huang Y, Yang J, Xue F. Associations of different insulin resistance-related indices with the incidence and progression trajectory of cardiometabolic multimorbidity: a prospective cohort study from UK biobank. Cardiovasc Diabetol. 2025;24(1):257.
Lee CJM, Kosyakovsky LB, Khan MS, Wu F, Chen G, Hill JA, Ho JE, Foo RS, Zannad F. Cardiovascular, kidney, liver, and metabolic interactions in heart failure: breaking down silos. Circ Res. 2025;136(11):1170–207.
Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):e1001779.
Leitzmann MF, Stein MJ, Baurecht H, Freisling H. Excess adiposity and cancer: evaluating a preclinical-clinical obesity framework for risk stratification. EClinicalMedicine. 2025;83:103247.
Elliott P, Peakman TC. The UK biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine. Int J Epidemiol. 2008;37(2):234–44.
Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, Vukcevic D, Delaneau O, O’Connell J, et al. The UK biobank resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203–9.
Yang H, Cheng A, Zhu D, Zhao M, Xi B. Childhood smoking Initiation, genetic susceptibility, and incident cardiovascular diseases in adulthood. J Adolesc Health. 2025;77(1):159–67.
Thompson DJ, Wells D, Selzam S, Peneva I, Moore R, Sharp K, Tarran WA, Beard EJ, Riveros-Mckay F, Giner-Delgado C. UK biobank release and systematic evaluation of optimised polygenic risk scores for 53 diseases and quantitative traits. MedRxiv. 2022;2022(2006):2016–22276246.
Lourida I, Hannon E, Littlejohns TJ, Langa KM, Hyppönen E, Kuzma E, Llewellyn DJ. Association of lifestyle and genetic risk with incidence of dementia. JAMA. 2019;322(5):430–7.
Jakobsen JC, Gluud C, Wetterslev J, Winkel P. When and how should multiple imputation be used for handling missing data in randomised clinical trials–a practical guide with flowcharts. BMC Med Res Methodol. 2017;17(1):162.
Hua K, Wojdyla D, Carnicelli A, Granger C, Wang X, Hong H. Network meta-analysis with individual participant-level data of time-to-event outcomes using cox regression. Stat Med. 2025;44(5):e70027.
Discacciati A, Palazzolo MG, Park JG, Melloni GEM, Murphy SA, Bellavia A. Estimating and presenting non-linear associations with restricted cubic splines. Int J Epidemiol. 2025;54(4).
Zhu Z, Yang P, Jia Y, Wang Y, Shi M, Zhong C, Peng H, Sun L, Guo D, Xu Q, et al. Plasma amino acid neurotransmitters and ischemic stroke prognosis: a multicenter prospective study. Am J Clin Nutr. 2023;118(4):754–62.
Liu K, Hu J, Huang Y, He D, Zhang J. Triglyceride-glucose-related indices and risk of cardiovascular disease and mortality in individuals with cardiovascular-kidney-metabolic (CKM) syndrome stages 0–3: a prospective cohort study of 282,920 participants in the UK biobank. Cardiovasc Diabetol. 2025;24(1):277.
Cook NR, Demler OV, Paynter NP. Clinical risk reclassification at 10 years. Stat Med. 2017;36(28):4498–502.
Bellavia A, Melloni GEM, Park JG, Discacciati A, Murphy SA. Estimating and presenting hazard ratios and absolute risks from a cox model with complex nonlinear interactions. Am J Epidemiol. 2024;193(8):1155–60.
Raeisi-Dehkordi H, Thorand B, Beigrezaei S, Peters A, Rathman W, Adamski J, Chatelan A, van der Schouw YT, Franco OH, Muka T, et al. The mediatory role of androgens on sex differences in glucose homeostasis and incidence of type 2 diabetes: the KORA study. Cardiovasc Diabetol. 2024;23(1):411.
Shi B, Choirat C, Coull BA, VanderWeele TJ, Valeri L. CMAverse: a suite of functions for reproducible causal mediation analyses. Epidemiology. 2021;32(5):e20–2.
Kim J, Kim D, Bae HJ, Park BE, Kang TS, Lim SH, Lee SY, Chung YH, Ryu JW, Lee MY, et al. Associations of combined polygenic risk score and glycemic status with atrial fibrillation, coronary artery disease and ischemic stroke. Cardiovasc Diabetol. 2024;23(1):5.
Hong J, Zhang R, Tang H, Wu S, Chen Y, Tan X. Comparison of triglyceride glucose index and modified triglyceride glucose indices in predicting cardiovascular diseases incidence among populations with cardiovascular-kidney-metabolic syndrome stages 0–3: a nationwide prospective cohort study. Cardiovasc Diabetol. 2025;24(1):98.
Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol. 2018;17(1):122.
Xie J, Pei X, Zhu S, Jiang W, Tang H, Wu D, Xie Y. Association of triglyceride-glucose-related indices with adverse clinical outcomes in individuals with normal body mass index. Front Cardiovasc Med. 2025;12:1570239.
Hasan A, Newaj A, Trisha AD, Hafsa JM, Mohanto NC, Ali N. Assessment of the relationship between liver enzymes and cardiovascular disease: a study in Bangladeshi adults. Endocrinol Diabetes Metab. 2024;7(2):e00481.
Trejo MJ, Floyd JS, Massera D, Daviglus M, Garcia-Bedoya O, Cai J, Talavera GA, Tamayo-Murillo DE, Labovitz D, Kaplan R. Association of liver related biomarkers with incident cardiovascular disease and all-cause mortality in the Hispanic community health study/study of Latinos (HCHS/SOL), a population-based cohort study. BMC Gastroenterol. 2025;25(1):543.
Xu X, Ma R, Zhang X, Guo H, Keerman M, Wang X, Li Y, Maimaitijiang R, He J, Guo S. Association between renal function trajectories and risk of cardiovascular disease: a prospective cohort study. Ann Med. 2024;56(1):2427907.
Zhang Y, Yang S, Chen J, Zhang Z, He P, Zhou C, Liu M, Ye Z, Wu Q, Li H, et al. Associations of serum cystatin C and its change with new-onset cardiovascular disease in Chinese general population. Nutr Metabolism Cardiovasc Diseases: NMCD. 2022;32(8):1963–71.
Batty GD, Gale CR, Kivimäki M, Deary IJ, Bell S. Comparison of risk factor associations in UK biobank against representative, general population based studies with conventional response rates: prospective cohort study and individual participant meta-analysis. BMJ (Clinical Res ed). 2020;368:m131.
Schoeler T, Speed D, Porcu E, Pirastu N, Pingault JB, Kutalik Z. Participation bias in the UK biobank distorts genetic associations and downstream analyses. Nat Hum Behav. 2023;7(7):1216–27.
 
				