Lane N, Power. Sex, Suicide: Mitochondria and the Meaning of Life. 2nd edition. Oxford, UK: Oxford University Press; 2018.

Lang BF, Gray MW, Burger G. Mitochondrial genome evolution and the origin of eukaryotes. Annu Rev Genet. 1999;33:351–97. https://doi.org/10.1146/annurev.genet.33.1.351.

Article 
CAS 
PubMed 

Google Scholar
 

Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol. 2018;20:745–54. https://doi.org/10.1038/s41556-018-0124-1.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Stampar SN, Broe MB, Macrander J, Reitzel AM, Brugler MR, Daly M. Linear mitochondrial genome in anthozoa (Cnidaria): a case study in ceriantharia. Sci Rep. 2019;9:6094. https://doi.org/10.1038/s41598-019-42621-z.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Arafat H, Alamaru A, Gissi C, Huchon D. Extensive mitochondrial gene rearrangements in ctenophora: insights from benthic platyctenida. BMC Evol Biol. 2018;18:65. https://doi.org/10.1186/s12862-018-1186-1.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cameron SL, Yoshizawa K, Mizukoshi A, Whiting MF, Johnson KP. Mitochondrial genome deletions and minicircles are common in lice (Insecta: Phthiraptera). BMC Genomics. 2011;12:394. https://doi.org/10.1186/1471-2164-12-394.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Boore JL. Animal mitochondrial genomes. Nucleic Acids Res. 1999;27:1767–80. https://doi.org/10.1093/nar/27.8.1767.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Boore JL, Macey JR, Medina M. Sequencing and comparing whole mitochondrial genomes of animals. Methods Enzymol. 2005;395:311–48. https://doi.org/10.1016/S0076-6879(05)95019-2.

Article 
CAS 
PubMed 

Google Scholar
 

Shadel GS, Clayton DA. Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem. 1997;66:409–35. https://doi.org/10.1146/annurev.biochem.66.1.409.

Article 
CAS 
PubMed 

Google Scholar
 

Pereira SL. Mitochondrial genome organization and vertebrate phylogenetics. Genet Mol Biol. 2000;23:745–52. https://doi.org/10.1590/S1415-47572000000400008.

Article 
CAS 

Google Scholar
 

Cameron SL. Insect mitochondrial genomics: implications for evolution and phylogeny. Annu Rev Entomol. 2014;59:95–117. https://doi.org/10.1146/annurev-ento-011613-162007.

Article 
CAS 
PubMed 

Google Scholar
 

Marcus JM. Our love-hate relationship with DNA barcodes, the Y2K problem, and the search for next generation barcodes. AIMS Genet. 2018;05:001–23. https://doi.org/10.3934/genet.2018.1.1.

Article 

Google Scholar
 

Shao R, Barker SC. Mitochondrial genomes of parasitic arthropods: implications for studies of population genetics and evolution. Parasitology. 2007;134:153–67. https://doi.org/10.1017/S0031182006001429.

Article 
CAS 
PubMed 

Google Scholar
 

Smith DR. The past, present and future of mitochondrial genomics: have we sequenced enough mtdnas? Brief Funct Genomics. 2015;elv027. https://doi.org/10.1093/bfgp/elv027.

Zardoya R. Recent advances in Understanding mitochondrial genome diversity. F1000Res. 2020;9:1–19. https://doi.org/10.12688/f1000research.21490.1.

Article 
CAS 

Google Scholar
 

Shields O. World distribution of the Vanessa Cardui group (Nymphalidae). J Lepid Soc. 1992;46:235–8.


Google Scholar
 

Newland D, Still R, Swash A, Tomlinson D. Britain’s Butterflies: A Field Guide to the Butterflies of Great Britain and Ireland. 3rd edition. New Jersey: Princeton University Press; 2015.

Stefanescu C, Páramo F, Åkesson S, Alarcón M, Ávila A, Brereton T, et al. Multi-generational long-distance migration of insects: studying the painted lady butterfly in the Western palaearctic. Ecography. 2013;36:474–86. https://doi.org/10.1111/j.1600-0587.2012.07738.x.

Article 

Google Scholar
 

Rajaei H, Aarvik L, Arnscheid WR, Baldizzone G, Bartsch D, Bengtsson BÅ, et al. Catalogue of the lepidoptera of Iran*. Integr Syst. 2023;6:121–459. https://doi.org/10.18476/2023.997558.7.

Article 

Google Scholar
 

Johnson G, Butterfly expedition to, Iran. 1966. The entomologist’s record and journal of variation. 1967;79:35–42.

Reed RD, Nagy LM. Evolutionary redeployment of a biosynthetic module: expression of eye pigment genes vermilion, cinnabar, and white in butterfly wing development. Evol Dev. 2005;7:301–11. https://doi.org/10.1111/j.1525-142X.2005.05036.x.

Article 
CAS 
PubMed 

Google Scholar
 

Abbasi R, Marcus JM. Color pattern evolution in Vanessa butterflies (Nymphalidae: Nymphalini): non-eyespot characters. Evol Dev. 2015;17:63–81. https://doi.org/10.1111/ede.12109.

Article 
CAS 
PubMed 

Google Scholar
 

Abbasi R, Marcus JM. Colour pattern homology and evolution in Vanessa butterflies (Nymphalidae: Nymphalini): eyespot characters. J Evol Biol. 2015;28:2009–26. https://doi.org/10.1111/jeb.12716.

Article 
CAS 
PubMed 

Google Scholar
 

Abbasi R, Marcus JM. A new A-P compartment boundary and organizer in holometabolous insect wings. Sci Rep. 2017;7:16337. https://doi.org/10.1038/s41598-017-16553-5.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Naderi A. The field guide of butterflies of Iran. Tehran-Iran: Iranshenasi; 2019.


Google Scholar
 

Liu G, Chang Z, Chen L, He J, Dong Z, Yang J, et al. Genome size variation in butterflies (Insecta, Lepidotera, Papilionoidea): a thorough phylogenetic comparison. Syst Entomol. 2020;45:571–82. https://doi.org/10.1111/syen.12417.

Article 

Google Scholar
 

Park JS, Kim MJ, Jeong SY, Kim SS, Kim I. Complete mitochondrial genomes of two gelechioids, mesophleps albilinella and dichomeris Ustalella (Lepidoptera: Gelechiidae), with a description of gene rearrangement in lepidoptera. Curr Genet. 2016;62:809–26. https://doi.org/10.1007/s00294-016-0585-3.

Article 
CAS 
PubMed 

Google Scholar
 

Liao F, Wang L, Wu S, Li Y-P, Zhao L, Huang G-M, et al. The complete mitochondrial genome of the fall webworm, Hyphantria cunea (Lepidoptera: Arctiidae). Int J Biol Sci. 2010;172–86. https://doi.org/10.7150/ijbs.6.172.

Laslett D, Canbäck B. ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics. 2008;24:172–5. https://doi.org/10.1093/bioinformatics/btm573.

Article 
CAS 
PubMed 

Google Scholar
 

Boore JL, Lavrov DV, Brown WM. Gene translocation links insects and crustaceans. Nature. 1998;392(6677):667–8. https://doi.org/10.1038/33577.

Article 
CAS 
PubMed 

Google Scholar
 

Tamura K, Battistuzzi FU, Billing-Ross P, Murillo O, Filipski A, Kumar S. Estimating divergence times in large molecular phylogenies. Proc Natl Acad Sci U S A. 2012;109:19333–8. https://doi.org/10.1073/pnas.1213199109.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tamura K, Tao Q, Kumar S. Theoretical foundation of the reltime method for estimating divergence times from variable evolutionary rates. Mol Biol Evol. 2018;35:1770–82. https://doi.org/10.1093/molbev/msy044.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Nei M, Kumar S. Molecular Evolution and Phylogenetics. 1st edition. New York: Oxford University Press; 2000.

Tao Q, Tamura K, Mello B, Kumar S. Reliable confidence intervals for reltime estimates of evolutionary divergence times. Mol Biol Evol. 2020;37:280–90. https://doi.org/10.1093/molbev/msz236.

Article 
CAS 
PubMed 

Google Scholar
 

Formenti G, Rhie A, Balacco J, Haase B, Mountcastle J, Fedrigo O, et al. Complete vertebrate mitogenomes reveal widespread repeats and gene duplications. Genome Biol. 2021;22:120. https://doi.org/10.1186/s13059-021-02336-9.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Borisova OF, Shchyolkina AK, Chernov BK, Tchurikov NA. Relative stability of AT and GC pairs in parallel DNA duplex formed by a natural sequence. FEBS Lett. 1993;322:304–6. https://doi.org/10.1016/0014-5793(93)81591-M.

Article 
CAS 
PubMed 

Google Scholar
 

Hu E-Z, Lan X-R, Liu Z-L, Gao J, Niu D-K. A positive correlation between GC content and growth temperature in prokaryotes. BMC Genomics. 2022;23:110. https://doi.org/10.1186/s12864-022-08353-7.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bernardi G, Bernardi G. Compositional constraints and genome evolution. J Mol Evol. 1986;24:1–11. https://doi.org/10.1007/BF02099946.

Article 
CAS 
PubMed 

Google Scholar
 

Church BV, Williams HT, Mar JC. Investigating skewness to understand gene expression heterogeneity in large patient cohorts. BMC Bioinformatics. 2019;20(S24):668. https://doi.org/10.1186/s12859-019-3252-0.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Frank AC, Lobry JR. Asymmetric substitution patterns: a review of possible underlying mutational or selective mechanisms. Gene. 1999;238:65–77. https://doi.org/10.1016/S0378-1119(99)00297-8.

Article 
CAS 
PubMed 

Google Scholar
 

Hubert B. SkewDB, a comprehensive database of GC and 10 other skews for over 30,000 chromosomes and plasmids. Sci Data. 2022;9:92. https://doi.org/10.1038/s41597-022-01179-8.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Montaña-Lozano P, Moreno-Carmona M, Ochoa-Capera M, Medina NS, Boore JL, Prada CF. Comparative genomic analysis of vertebrate mitochondrial reveals a differential of rearrangements rate between taxonomic class. Sci Rep. 2022;12:5479. https://doi.org/10.1038/s41598-022-09512-2.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mwinyi A, Meyer A, Bleidorn C, Lieb B, Bartolomaeus T, Podsiadlowski L. Mitochondrial genome sequence and gene order of sipunculus nudus give additional support for an inclusion of sipuncula into annelida. BMC Genomics. 2009;10:27. https://doi.org/10.1186/1471-2164-10-27.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shtolz N, Mishmar D. The metazoan landscape of mitochondrial DNA gene order and content is shaped by selection and affects mitochondrial transcription. Commun Biol. 2023;6:93. https://doi.org/10.1038/s42003-023-04471-4.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wahlberg N, Braby MF, Brower AVZ, de Jong R, Lee M-M, Nylin S, et al. Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers. Proc Biol Sci. 2005;272:1577–86. https://doi.org/10.1098/rspb.2005.3124.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yan Z-T, Fan Z-H, He S-L, Wang X-Q, Chen B, Luo S-T. Mitogenomes of eight nymphalidae butterfly species and reconstructed phylogeny of nymphalidae (Nymphalidae: Lepidoptera). Genes. 2023;14:1018. https://doi.org/10.3390/genes14051018.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Freitas AVL, Brown KS. Phylogeny of the nymphalidae (Lepidoptera). Syst Biol. 2004;53(3):363–83. https://doi.org/10.1080/10635150490445670.

Article 
PubMed 

Google Scholar
 

Lang S-Y. The nymphalidae of China (Lepidoptera, Rhopalocera). In: Libytheinae PI, editor. Danainae, Calinaginae, Morphinae, Heliconninae, Nymphalinae, Charaxinae, Apaturinae, Cyrestinae, Biblidinae, limenitinae. Pardubice, Czech Republic: Tshikolovets; 2012.


Google Scholar
 

Zhang H, Chen Q, Xie Q, Lin Q, Sun G, Fang Y, et al. The complete mitochondrial genome of Stibochiona Nicea (Gray, 1846) (Lepidoptera: Nymphalidae) and phylogenetic analysis. Mitochondr DNA Part B. 2023;8:648–52. https://doi.org/10.1080/23802359.2023.2221348.

Article 

Google Scholar
 

Brower AVZ. Phylogenetic relationships among the Nymphalidae (Lepidoptera) inferred from partial sequences of the wingless gene. Proc R Soc Lond B Biol Sci. 2000;267:1201–11. https://doi.org/10.1098/rspb.2000.1129.

Article 
CAS 

Google Scholar
 

Wahlberg N, Weingartner E, Nylin S. Towards a better understanding of the higher systematics of nymphalidae (Lepidoptera: Papilionoidea). Mol Phylogenet Evol. 2003;28:473–84. https://doi.org/10.1016/S1055-7903(03)00052-6.

Article 
CAS 
PubMed 

Google Scholar
 

Wahlberg N, Brower AVZ, Nylin S. Phylogenetic relationships and historical biogeography of tribes and genera in the subfamily nymphalinae (Lepidoptera: Nymphalidae). Biol J Linn Soc. 2005;86:227–51. https://doi.org/10.1111/j.1095-8312.2005.00531.x.

Article 

Google Scholar
 

Su C, Shi Q, Sun X, Ma J, Li C, Hao J, et al. Dated phylogeny and dispersal history of the butterfly subfamily nymphalinae (Lepidoptera: Nymphalidae). Sci Rep. 2017;7:8799. https://doi.org/10.1038/s41598-017-08993-w.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wan X, Kim MJ, Cho Y, Jun J, Jeong HC, Lee KY, et al. Sequence divergence and phylogenetic investigation of the Nymphalidae (Lepidoptera: Papilionoidea) occurring in South Korea. Int J Ind Entomol. 2013;26:95–112. https://doi.org/10.7852/ijie.2013.26.2.95.

Article 

Google Scholar
 

Wahlberg N, Leneveu J, Kodandaramaiah U, Peña C, Nylin S, Freitas AVL, et al. Nymphalid butterflies diversify following near demise at the Cretaceous/Tertiary boundary. Proc R Soc Lond B Biol Sci. 2009;276:4295–302. https://doi.org/10.1098/rspb.2009.1303.

Article 

Google Scholar
 

Peters MJ, Marcus JM. Taxonomy as a hypothesis: testing the status of the Bermuda Buckeye butterfly Junonia coenia bergi (Lepidoptera: Nymphalidae). Syst Entomol. 2017;42:288–300. https://doi.org/10.1111/syen.12214.

Article 

Google Scholar
 

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9. https://doi.org/10.1093/bioinformatics/bts199.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lu Y, Liu N, Xu L, Fang J, Wang S. The complete mitochondrial genome of Vanessa indica and phylogenetic analyses of the family nymphalidae. Genes Genomics. 2018;40:1011–22. https://doi.org/10.1007/s13258-018-0709-x.

Article 
CAS 
PubMed 

Google Scholar
 

Grant JR, Enns E, Marinier E, Mandal A, Herman EK, Chen C, et al. Proksee: in-depth characterization and visualization of bacterial genomes. Nucleic Acids Res. 2023;51:W484–92. https://doi.org/10.1093/nar/gkad326.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Perna NT, Kocher ThomasD. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol. 1995;41. https://doi.org/10.1007/BF00186547.

Sharp PM, Tuohy TMF, Mosurski KR. Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res. 1986;14:5125–43. https://doi.org/10.1093/nar/14.13.5125.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Khandia R, Singhal S, Kumar U, Ansari A, Tiwari R, Dhama K, et al. Analysis of Nipah virus codon usage and adaptation to hosts. Front Microbiol. 2019. https://doi.org/10.3389/fmicb.2019.00886.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ackery PR, de Jong R, Vane-Wright RI. 16. The butterflies: Hedyloidea, hesperioidea and papilionoidea. Band 4: Arthropoda, 2 Hälfte: Insecta, Lepidoptera, moths and Butterflies, Teilband/Part 35, volume 1: Evolution, Systematics, and biogeography. DE GRUYTER; 1998. pp. 263–300. https://doi.org/10.1515/9783110804744.263.

Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007;56(4):564–77. https://doi.org/10.1080/10635150701472164.

Article 
CAS 
PubMed 

Google Scholar
 

Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52. https://doi.org/10.1093/oxfordjournals.molbev.a026334.

Article 
CAS 
PubMed 

Google Scholar
 

Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008;36. https://doi.org/10.1093/nar/gkn180. Web Server:W465–9.

Alexiuk MR, Lalonde MML. Phylogenetic analysis of the complete mitochondrial genome of the blomfild’s beauty butterfly Smyrna Blomfildia (Fabricius 1781) (Insecta: lepidoptera: nymphalidae: Nymphalini). Mitochondr DNA Part B. 2021;6:3199–201. https://doi.org/10.1080/23802359.2021.1989337.

Article 

Google Scholar
 

Agcaoili AM, Ameena N, Andres D, Caners R, Chahal MK, Croitor NJ, et al. Phylogenetic analysis of the complete mitochondrial genome of the orange-winged sulphur butterfly Dercas nina mell 1913 (Insecta: lepidoptera: pieridae: Coliadinae). Mitochondrial DNA Part B. 2024;9:1510–7. https://doi.org/10.1080/23802359.2024.2427109.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Alexiuk MR, Lalonde MML, Marcus JM. Phylogenetic analysis of the complete mitochondrial genome of the Japanese Peacock butterfly Aglais Io geisha (Stichel 1907) (Insecta: lepidoptera: Nymphalidae). Mitochondr DNA B Resour. 2021;6:3082–4. https://doi.org/10.1080/23802359.2021.1981168.

Article 

Google Scholar
 

Thompson JD, Higgins DG, Gibson TJ. CLUSTAL w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80. https://doi.org/10.1093/nar/22.22.4673.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal w and clustal x version 2.0. Bioinformatics. 2007;23:2947–8. https://doi.org/10.1093/bioinformatics/btm404.

Article 
CAS 
PubMed 

Google Scholar
 

Kumar S, Stecher G, Suleski M, Sanderford M, Sharma S, Tamura K. MEGA12: molecular evolutionary genetic analysis version 12 for adaptive and green computing. Mol Biol Evol. 2024. https://doi.org/10.1093/molbev/msae263.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Akaike H. A new look at the statistical model identification. IEEE Trans Automat Contr. 1974;19:716–23. https://doi.org/10.1109/TAC.1974.1100705.

Article 

Google Scholar
 

Schwarz G. Estimating the dimension of a model. Ann Stat. 1978;6:461–4.

Article 

Google Scholar
 

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42. https://doi.org/10.1093/sysbio/sys029.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst Biol. 2018;67:901–4. https://doi.org/10.1093/sysbio/syy032.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rambaut A. FigTree. 2023.

Hall TA, BioEdit:. A User-Friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8. https://doi.org/10.14601/Phytopathol_Mediterr-14998u1.29.

Article 
CAS 

Google Scholar
 

Milec LJM, Vanhove MPM, Bukinga FM, De Keyzer ELR, Kapepula VL, Masilya PM, et al. Complete mitochondrial genomes and updated divergence time of the two freshwater clupeids endemic to lake Tanganyika (Africa) suggest intralacustrine speciation. BMC Ecol Evol. 2022;22:127. https://doi.org/10.1186/s12862-022-02085-8.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mello B. Estimating timetrees with MEGA and the timetree resource. Mol Biol Evol. 2018;35:2334–42. https://doi.org/10.1093/molbev/msy133.

Article 
CAS 
PubMed 

Google Scholar
 

Kumar S, Stecher G, Suleski M, Hedges SB, TimeTree. A resource for Timelines, Timetrees, and divergence times. Mol Biol Evol. 2017;34:1812–9. https://doi.org/10.1093/molbev/msx116.

Article 
CAS 
PubMed 

Google Scholar