Zhang, Y. J. et al. Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes. Nature 570, 349–353 (2019).

Article 
ADS 

Google Scholar
 

Tokura, Y. & Nagaosa, N. Nonreciprocal responses from non-centrosymmetric quantum materials. Nat. Commun. 9, 3740 (2018).

Article 
ADS 

Google Scholar
 

Yuan, H. et al. Generation and electric control of spin-valley-coupled circular photogalvanic current in WSe2. Nat. Nanotechnol. 9, 851–857 (2014).

Article 
ADS 

Google Scholar
 

Yang, S. H., Naaman, R., Paltiel, Y. & Parkin, S. S. P. Chiral spintronics. Nat. Rev. Phys. 3, 328–343 (2021).

Article 

Google Scholar
 

Naaman, R., Paltiel, Y. & Waldeck, D. H. Chiral molecules and the electron spin. Nat. Rev. Chem. 3, 250–260 (2019).

Article 

Google Scholar
 

Nakajima, R. et al. Giant spin polarization and a pair of antiparallel spins in a chiral superconductor. Nature 613, 479–484 (2023).

Article 
ADS 

Google Scholar
 

Sun, R. et al. Inverse chirality-induced spin selectivity effect in chiral assemblies of π-conjugated polymers. Nat. Mater. 23, 782–789 (2024).

Article 
ADS 

Google Scholar
 

Eckvahl, H. J. et al. Direct observation of chirality-induced spin selectivity in electron donor–acceptor molecules. Science 382, 197–201 (2023).

Article 
ADS 

Google Scholar
 

Kishine, J., Ovchinnikov, A. S. & Tereshchenko, A. A. Chirality-induced phonon dispersion in a noncentrosymmetric micropolar crystal. Phys. Rev. Lett. 125, 245302 (2020).

Article 
ADS 

Google Scholar
 

Ishito, K. et al. Truly chiral phonons in α-HgS. Nat. Phys. 19, 35–39 (2023).

Article 

Google Scholar
 

Ueda, H. et al. Chiral phonons in quartz probed by X-rays. Nature 618, 946–950 (2023).

Article 
ADS 

Google Scholar
 

Yen, Y. et al. Controllable orbital angular momentum monopoles in chiral topological semimetals. Nat. Phys. 20, 1912–1918 (2024).

Article 

Google Scholar
 

Yang, Q. et al. Monopole-like orbital-momentum locking and the induced orbital transport in topological chiral semimetals. Proc. Natl Acad. Sci. USA 120, e2305541120 (2023).

Article 

Google Scholar
 

Joseph, N. B., Bandyopadhyay, A. & Narayan, A. Chirality-tunable nonlinear Hall effect. Chem. Mater. 36, 8602–8612 (2024).


Google Scholar
 

Cheng, B. et al. Giant nonlinear Hall and wireless rectification effects at room temperature in the elemental semiconductor tellurium. Nat. Commun. 15, 5513 (2024).

Article 
ADS 

Google Scholar
 

Nakai, R. & Nagaosa, N. Nonreciprocal thermal and thermoelectric transport of electrons in noncentrosymmetric crystals. Phys. Rev. B 99, 115201 (2019).

Article 
ADS 

Google Scholar
 

Osada, T. & Kiswandhi, A. Possible nonlinear anomalous thermoelectric effect in organic massive Dirac fermion system. J. Phys. Soc. Jpn 90, 053704 (2021).

Article 
ADS 

Google Scholar
 

Zeng, C., Nandy, S. & Tewari, S. Fundamental relations for anomalous thermoelectric transport coefficients in the nonlinear regime. Phys. Rev. Res. 2, 032066(R) (2020).

Article 

Google Scholar
 

Zeng, C., Nandy, S., Taraphder, A. & Tewari, S. Nonlinear Nernst effect in bilayer WTe2. Phys. Rev. B 100, 245102 (2019).

Article 
ADS 

Google Scholar
 

Yu, X. Q., Zhu, Z. G., You, J. S., Low, T. & Su, G. Topological nonlinear anomalous Nernst effect in strained transition metal dichalcogenides. Phys. Rev. B 99, 201410(R) (2019).

Article 
ADS 

Google Scholar
 

Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

Article 
ADS 

Google Scholar
 

Yamaguchi, T., Nakazawa, K. & Yamakage, A. Microscopic theory of nonlinear Hall effect induced by electric field and temperature gradient. Phys. Rev. B 109, 205117 (2024).

Article 
ADS 

Google Scholar
 

Arisawa, H., Fujimoto, Y., Kikkawa, T. & Saitoh, E. Observation of nonlinear thermoelectric effect in MoGe/Y3Fe5O12. Nat. Commun. 15, 6912 (2024).

Article 
ADS 

Google Scholar
 

Chang, C. W., Okawa, D., Majumdar, A. & Zettl, A. Solid-state thermal rectifier. Science 314, 1121–1124 (2006).

Article 
ADS 

Google Scholar
 

Li, B., Wang, L. & Casati, G. Thermal diode: rectification of heat flux. Phys. Rev. Lett. 93, 184301 (2004).

Article 
ADS 

Google Scholar
 

Hidaka, Y., Pu, S. & Yang, D. L. Nonlinear responses of chiral fluids from kinetic theory. Phys. Rev. D 97, 016004 (2018).

Article 
ADS 
MathSciNet 

Google Scholar
 

Toshio, R., Takasan, K. & Kawakami, N. Anomalous hydrodynamic transport in interacting noncentrosymmetric metals. Phys. Rev. Res. 2, 032021(R) (2020).

Article 

Google Scholar
 

Bottom, V. E. The Hall effect and electrical resistivity of tellurium. Science 115, 570–571 (1952).

Article 
ADS 

Google Scholar
 

Lin, S. et al. Tellurium as a high-performance elemental thermoelectric. Nat. Commun. 7, 10287 (2016).

Article 
ADS 

Google Scholar
 

Peng, H., Kioussis, N. & Snyder, G. J. Elemental tellurium as a chiral p-type thermoelectric material. Phys. Rev. B 89, 195206 (2014).

Article 
ADS 

Google Scholar
 

Adams, A. R., Baumann, F. & Stuke, J. Thermal conductivity of selenium and tellurium single crystals and phonon drag of tellurium. Phys. Status Solidi B 23, K99–K104 (1967).

Article 
ADS 

Google Scholar
 

Mun, E., Bud’Ko, S. L., Torikachvili, M. S. & Canfield, P. C. Experimental setup for the measurement of the thermoelectric power in zero and applied magnetic field. Meas. Sci. Technol. 21, 055104 (2010).

Article 
ADS 

Google Scholar
 

Resel, R. et al. Thermopower measurements in magnetic fields up to 17 tesla using the toggled heating method. Rev. Sci. Instrum. 67, 1970–1975 (1996).

Article 
ADS 

Google Scholar
 

Nakazawa, K., Yamaguchi, T. & Yamakage, A. Nonlinear charge transport properties in chiral tellurium. Phys. Rev. Mater. 8, L091601 (2024).

Article 
ADS 

Google Scholar
 

Koma, A. & Tanaka, S. Etch pits and crystal structure of tellurium. Phys. Status Solidi B 40, 239–248 (1970).

Article 
ADS 

Google Scholar
 

Nakazawa, K., Yamaguchi, T. & Yamakage, A. Nonlinear charge and thermal transport properties induced by orbital magnetic moment in chiral crystalline cobalt monosilicide. Phys. Rev. B 111, 045161 (2025).

Article 
ADS 

Google Scholar
 

Yoda, T., Yokoyama, T. & Murakami, S. Orbital Edelstein effect as a condensed-matter analog of solenoids. Nano Lett. 18, 916–920 (2018).

Article 
ADS 

Google Scholar
 

Maruggi, G. P., Ferreira, J., Baggio-Saitovitch, E., Enderlein, C. & Silva Neto, M. B. Hedgehog orbital texture in p-type tellurium and the antisymmetric nonreciprocal Hall response. Phys. Rev. Mater. 7, 014204 (2023).

Article 

Google Scholar
 

Zhao, X. et al. Controllable synthesis of high-quality two-dimensional tellurium by a facile chemical vapor transport strategy. iScience 25, 103594 (2022).

Article 
ADS 

Google Scholar
 

Hou, D. et al. Observation of temperature-gradient-induced magnetization. Nat. Commun. 7, 12265 (2016).

Article 
ADS 

Google Scholar
 

Chun, S. H., Salamon, M. B., Tomioka, Y. & Tokura, Y. Breakdown of the lattice polaron picture in La0.7Ca0.3MnO3 single crystals. Phys. Rev. B 61, R9225(R) (2000).

Article 
ADS 

Google Scholar
 

Rani, D., Kangsabanik, J., Suresh, K. G. & Alam, A. Disorder-mediated quenching of magnetization in NbVTiAl: theory and experiment. J. Magn. Magn. Mater. 551, 169124 (2022).

Article 

Google Scholar
 

Caldwell, R. S. & Fan, H. Y. Optical properties of tellurium and selenium. Phys. Rev. 114, 664–675 (1959).

Article 
ADS 

Google Scholar