Bor, Z. Distortion of femtosecond laser pulses in lenses and lens systems. J. Mod. Opt. 35, 1907–1918 (1988).

Article 
ADS 

Google Scholar
 

Krausz, F. & Ivanov, M. Y. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

Article 
ADS 

Google Scholar
 

Gaumnitz, T. et al. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver. Opt. Express 25, 27506–27518 (2017).

Article 
ADS 

Google Scholar
 

Duris, J. et al. Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser. Nat. Photon. 14, 30–36 (2020).

Article 
ADS 
MathSciNet 

Google Scholar
 

Yan, J. et al. Terawatt-attosecond hard X-ray free-electron laser at high repetition rate. Nat. Photon. 18, 1293–1298 (2024).

Article 
ADS 

Google Scholar
 

Drescher, L. et al. Extreme-ultraviolet refractive optics. Nature 564, 91–94 (2018).

Article 
ADS 

Google Scholar
 

Ossiander, M. et al. Extreme ultraviolet metalens by vacuum guiding. Science 380, 59–63 (2023).

Article 
ADS 

Google Scholar
 

Larruquert, J. I. & Keski-Kuha, R. A. M. Multilayer coatings with high reflectance in the extreme-ultraviolet spectral range of 50 to 121.6 nm. Appl. Opt. 38, 1231–1236 (1999).

Article 
ADS 

Google Scholar
 

Bourassin-Bouchet, C., Mang, M. M., Delmotte, F., Chavel, P. & de Rossi, S. How to focus an attosecond pulse. Opt. Express 21, 2506–2520 (2013).

Article 
ADS 

Google Scholar
 

Muschet, A. A., De Andres, A., Smijesh, N. & Veisz, L. An easy technique for focus characterization and optimization of XUV and soft X-ray pulses. Appl. Sci. 12, 5652 (2022).

Article 

Google Scholar
 

Appleton, E. V. Wireless studies of the ionosphere. Proc. Wireless Sect. Inst. Electr. Eng. 7, 257–265 (1932).


Google Scholar
 

Bobrova, N. A. et al. Simulations of a hydrogen-filled capillary discharge waveguide. Phys. Rev. E 65, 016407 (2001).

Article 
ADS 

Google Scholar
 

Gordon, D. F. et al. Ideal form of optical plasma lenses. Phys. Plasmas 25, 063101 (2018).

Article 
ADS 

Google Scholar
 

Hubbard, R. F. et al. High intensity focusing of laser pulses using a short plasma channel lens. Phys. Plasmas 9, 1431–1442 (2002).

Article 
ADS 

Google Scholar
 

Katzir, Y., Eisenmann, S., Ferber, Y., Zigler, A. & Hubbard, R. F. A plasma microlens for ultrashort high power lasers. Appl. Phys. Lett. 95, 031101 (2009).

Article 
ADS 

Google Scholar
 

Edwards, M. R. et al. Holographic plasma lenses. Phys. Rev. Lett. 128, 065003 (2022).

Article 
ADS 

Google Scholar
 

Spence, D. J. & Hooker, S. M. Investigation of a hydrogen plasma waveguide. Phys. Rev. E 63, 015401 (2000).

Article 
ADS 

Google Scholar
 

Spence, D. J., Butler, A. & Hooker, S. M. First demonstration of guiding of high-intensity laser pulses in a hydrogen-filled capillary discharge waveguide. J. Phys. B 34, 4103 (2001).

Article 
ADS 

Google Scholar
 

Sjobak, K. N. et al. Strong focusing gradient in a linear active plasma lens. Phys. Rev. Accel. Beams 24, 121306 (2021).

Article 
ADS 

Google Scholar
 

Lindstrøm, C. A. et al. Emittance preservation in a plasma-wakefield accelerator. Nat. Commun. 15, 6097 (2024).

Article 
ADS 

Google Scholar
 

Broks, B. H. P., van Dijk, W. & van der Mullen, J. J. A. M. Parameter study of a pulsed capillary discharge waveguide. J. Phys. D 39, 2377 (2006).

Article 
ADS 

Google Scholar
 

Sobolev, E. et al. Terawatt-level three-stage pulse compression for all-attosecond pump-probe spectroscopy. Opt. Express 32, 46251–46258 (2024).

Article 
ADS 

Google Scholar
 

Senfftleben, B. et al. Highly non-linear ionization of atoms induced by intense high-harmonic pulses. J. Phys. Photonics 2, 034001 (2020).

Article 
ADS 

Google Scholar
 

Drescher, M. et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803–807 (2002).

Article 
ADS 

Google Scholar
 

Schnorr, K. et al. Electron rearrangement dynamics in dissociating In+2 molecules accessed by extreme ultraviolet pump-probe experiments. Phys. Rev. Lett. 113, 073001 (2014).

Article 
ADS 

Google Scholar
 

Fomenkov, I. et al. Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling. Adv. Opt. Technol. 6, 173–186 (2017).

Article 
ADS 

Google Scholar
 

Pirati, A. et al. EUV lithography performance for manufacturing: status and outlook. In Proc. SPIE 78–92 (SPIE, 2016).

Butler, A., Spence, D. J. & Hooker, S. M. Guiding of high-intensity laser pulses with a hydrogen-filled capillary discharge waveguide. Phys. Rev. Lett. 89, 185003 (2002).

Article 
ADS 

Google Scholar
 

Bobrova, N. A. et al. Laser-heater assisted plasma channel formation in capillary discharge waveguides. Phys. Plasmas 20, 020703 (2013).

Article 
ADS 
MathSciNet 

Google Scholar
 

Gonsalves, A. J. et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 122, 084801 (2019).

Article 
ADS 

Google Scholar
 

Gonsalves, A. J. et al. Laser-heated capillary discharge plasma waveguides for electron acceleration to 8 GeV. Phys. Plasmas 27, 053102 (2020).

Article 
ADS 

Google Scholar
 

Chang, Z. Fundamentals of Attosecond Optics (CRC Press, 2011).

Chang, Z. Attosecond chirp compensation in water window by plasma dispersion. Opt. Express 26, 33238–33244 (2018).

Article 
ADS 

Google Scholar
 

Manschwetus, B. et al. Two-photon double ionization of neon using an intense attosecond pulse train. Phys. Rev. A 93, 061402 (2016).

Article 
ADS 

Google Scholar
 

Ye, P. et al. High-flux 100 kHz attosecond pulse source driven by a high-average power annular laser beam. Ultrafast Sci. 2022, 9823783 (2022).

Article 
ADS 

Google Scholar
 

Calegari, F. et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science 346, 336–339 (2014).

Article 
ADS 

Google Scholar
 

Merritt, I. C. D., Jacquemin, D. & Vacher, M. Attochemistry: is controlling electrons the future of photochemistry? J. Phys. Chem. Lett. 12, 8404–8415 (2021).

Article 

Google Scholar
 

Calegari, F. & Martin, F. Open questions in attochemistry. Commun. Chem. 6, 184 (2023).

Article 

Google Scholar
 

Takahashi, E. J., Hasegawa, H., Nabekawa, Y. & Midorikawa, K. High-throughput, high-damage-threshold broadband beam splitter for high-order harmonics in the extreme-ultraviolet region. Opt. Lett. 29, 507–509 (2004).

Article 
ADS 

Google Scholar
 

Gonsalves, A. J. et al. Demonstration of a high repetition rate capillary discharge waveguide. J. Appl. Phys. 119, 033302 (2016).

Article 
ADS 

Google Scholar
 

Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

Article 
ADS 

Google Scholar
 

Durfee, C. G. & Milchberg, H. M. Light pipe for high intensity laser pulses. Phys. Rev. Lett. 71, 2409–2412 (1993).

Article 
ADS 

Google Scholar
 

Nikitin, S. P., Alexeev, I., Fan, J. & Milchberg, H. M. High efficiency coupling and guiding of intense femtosecond laser pulses in preformed plasma channels in an elongated gas jet. Phys. Rev. E 59, R3839–R3842 (1999).

Article 
ADS 

Google Scholar
 

Picksley, A. et al. Meter-scale conditioned hydrodynamic optical-field-ionized plasma channels. Phys. Rev. E 102, 053201 (2020).

Article 
ADS 

Google Scholar
 

Alejo, A., Cowley, J., Picksley, A., Walczak, R. & Hooker, S. M. Demonstration of kilohertz operation of hydrodynamic optical-field-ionized plasma channels. Phys. Rev. Accel. Beams 25, 011301 (2022).

Article 
ADS 

Google Scholar
 

Khurelbaatar, T. et al. Realization of a continuously phase-locked few-cycle deep-UV/XUV pump-probe beamline with attosecond precision for ultrafast spectroscopy. Appl. Sci. 11, 6840 (2021).

Article 

Google Scholar
 

Travers, J. C., Grigorova, T. F., Brahms, C. & Belli, F. High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres. Nat. Photon. 13, 547–554 (2019).

Article 
ADS 

Google Scholar
 

Travers, J. C. Optical solitons in hollow-core fibres. Opt. Commun. 555, 130191 (2024).

Article 

Google Scholar
 

Reduzzi, M. et al. Direct temporal characterization of sub-3-fs deep UV pulses generated by resonant dispersive wave emission. Opt. Express 31, 26854–26864 (2023).

Article 
ADS 

Google Scholar
 

Lee, J. P. et al. Few-femtosecond soft X-ray transient absorption spectroscopy with tuneable DUV-vis pump pulses. Optica 11, 1320–1323 (2024).

Article 
ADS 

Google Scholar
 

Andrade, J. R. C. et al. Temporal characterization of tunable few-cycle vacuum ultraviolet pulses. Nat. Photon. (2025).

Henke, B. L., Gullikson, E. M. & Davis, J. C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92. At. Data Nucl. Data Tables 54, 181–342 (1993).

Article 
ADS 

Google Scholar
 

Samson, J. A. R. & Haddad, G. N. Total photoabsorption cross sections of H2 from 18 to 113 eV. J. Opt. Soc. Am. B 11, 277–279 (1994).

Article 
ADS 

Google Scholar
 

Svirplys, E. et al. Plasma lens for focusing attosecond pulses. Zenodo https://doi.org/10.5281/zenodo.15180960 (2025).