Bor, Z. Distortion of femtosecond laser pulses in lenses and lens systems. J. Mod. Opt. 35, 1907–1918 (1988).
Krausz, F. & Ivanov, M. Y. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).
Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).
Gaumnitz, T. et al. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver. Opt. Express 25, 27506–27518 (2017).
Duris, J. et al. Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser. Nat. Photon. 14, 30–36 (2020).
Yan, J. et al. Terawatt-attosecond hard X-ray free-electron laser at high repetition rate. Nat. Photon. 18, 1293–1298 (2024).
Drescher, L. et al. Extreme-ultraviolet refractive optics. Nature 564, 91–94 (2018).
Ossiander, M. et al. Extreme ultraviolet metalens by vacuum guiding. Science 380, 59–63 (2023).
Larruquert, J. I. & Keski-Kuha, R. A. M. Multilayer coatings with high reflectance in the extreme-ultraviolet spectral range of 50 to 121.6 nm. Appl. Opt. 38, 1231–1236 (1999).
Bourassin-Bouchet, C., Mang, M. M., Delmotte, F., Chavel, P. & de Rossi, S. How to focus an attosecond pulse. Opt. Express 21, 2506–2520 (2013).
Muschet, A. A., De Andres, A., Smijesh, N. & Veisz, L. An easy technique for focus characterization and optimization of XUV and soft X-ray pulses. Appl. Sci. 12, 5652 (2022).
Appleton, E. V. Wireless studies of the ionosphere. Proc. Wireless Sect. Inst. Electr. Eng. 7, 257–265 (1932).
Bobrova, N. A. et al. Simulations of a hydrogen-filled capillary discharge waveguide. Phys. Rev. E 65, 016407 (2001).
Gordon, D. F. et al. Ideal form of optical plasma lenses. Phys. Plasmas 25, 063101 (2018).
Hubbard, R. F. et al. High intensity focusing of laser pulses using a short plasma channel lens. Phys. Plasmas 9, 1431–1442 (2002).
Katzir, Y., Eisenmann, S., Ferber, Y., Zigler, A. & Hubbard, R. F. A plasma microlens for ultrashort high power lasers. Appl. Phys. Lett. 95, 031101 (2009).
Edwards, M. R. et al. Holographic plasma lenses. Phys. Rev. Lett. 128, 065003 (2022).
Spence, D. J. & Hooker, S. M. Investigation of a hydrogen plasma waveguide. Phys. Rev. E 63, 015401 (2000).
Spence, D. J., Butler, A. & Hooker, S. M. First demonstration of guiding of high-intensity laser pulses in a hydrogen-filled capillary discharge waveguide. J. Phys. B 34, 4103 (2001).
Sjobak, K. N. et al. Strong focusing gradient in a linear active plasma lens. Phys. Rev. Accel. Beams 24, 121306 (2021).
Lindstrøm, C. A. et al. Emittance preservation in a plasma-wakefield accelerator. Nat. Commun. 15, 6097 (2024).
Broks, B. H. P., van Dijk, W. & van der Mullen, J. J. A. M. Parameter study of a pulsed capillary discharge waveguide. J. Phys. D 39, 2377 (2006).
Sobolev, E. et al. Terawatt-level three-stage pulse compression for all-attosecond pump-probe spectroscopy. Opt. Express 32, 46251–46258 (2024).
Senfftleben, B. et al. Highly non-linear ionization of atoms induced by intense high-harmonic pulses. J. Phys. Photonics 2, 034001 (2020).
Drescher, M. et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803–807 (2002).
Schnorr, K. et al. Electron rearrangement dynamics in dissociating In+2 molecules accessed by extreme ultraviolet pump-probe experiments. Phys. Rev. Lett. 113, 073001 (2014).
Fomenkov, I. et al. Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling. Adv. Opt. Technol. 6, 173–186 (2017).
Pirati, A. et al. EUV lithography performance for manufacturing: status and outlook. In Proc. SPIE 78–92 (SPIE, 2016).
Butler, A., Spence, D. J. & Hooker, S. M. Guiding of high-intensity laser pulses with a hydrogen-filled capillary discharge waveguide. Phys. Rev. Lett. 89, 185003 (2002).
Bobrova, N. A. et al. Laser-heater assisted plasma channel formation in capillary discharge waveguides. Phys. Plasmas 20, 020703 (2013).
Gonsalves, A. J. et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 122, 084801 (2019).
Gonsalves, A. J. et al. Laser-heated capillary discharge plasma waveguides for electron acceleration to 8 GeV. Phys. Plasmas 27, 053102 (2020).
Chang, Z. Fundamentals of Attosecond Optics (CRC Press, 2011).
Chang, Z. Attosecond chirp compensation in water window by plasma dispersion. Opt. Express 26, 33238–33244 (2018).
Manschwetus, B. et al. Two-photon double ionization of neon using an intense attosecond pulse train. Phys. Rev. A 93, 061402 (2016).
Ye, P. et al. High-flux 100 kHz attosecond pulse source driven by a high-average power annular laser beam. Ultrafast Sci. 2022, 9823783 (2022).
Calegari, F. et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science 346, 336–339 (2014).
Merritt, I. C. D., Jacquemin, D. & Vacher, M. Attochemistry: is controlling electrons the future of photochemistry? J. Phys. Chem. Lett. 12, 8404–8415 (2021).
Calegari, F. & Martin, F. Open questions in attochemistry. Commun. Chem. 6, 184 (2023).
Takahashi, E. J., Hasegawa, H., Nabekawa, Y. & Midorikawa, K. High-throughput, high-damage-threshold broadband beam splitter for high-order harmonics in the extreme-ultraviolet region. Opt. Lett. 29, 507–509 (2004).
Gonsalves, A. J. et al. Demonstration of a high repetition rate capillary discharge waveguide. J. Appl. Phys. 119, 033302 (2016).
Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).
Durfee, C. G. & Milchberg, H. M. Light pipe for high intensity laser pulses. Phys. Rev. Lett. 71, 2409–2412 (1993).
Nikitin, S. P., Alexeev, I., Fan, J. & Milchberg, H. M. High efficiency coupling and guiding of intense femtosecond laser pulses in preformed plasma channels in an elongated gas jet. Phys. Rev. E 59, R3839–R3842 (1999).
Picksley, A. et al. Meter-scale conditioned hydrodynamic optical-field-ionized plasma channels. Phys. Rev. E 102, 053201 (2020).
Alejo, A., Cowley, J., Picksley, A., Walczak, R. & Hooker, S. M. Demonstration of kilohertz operation of hydrodynamic optical-field-ionized plasma channels. Phys. Rev. Accel. Beams 25, 011301 (2022).
Khurelbaatar, T. et al. Realization of a continuously phase-locked few-cycle deep-UV/XUV pump-probe beamline with attosecond precision for ultrafast spectroscopy. Appl. Sci. 11, 6840 (2021).
Travers, J. C., Grigorova, T. F., Brahms, C. & Belli, F. High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres. Nat. Photon. 13, 547–554 (2019).
Travers, J. C. Optical solitons in hollow-core fibres. Opt. Commun. 555, 130191 (2024).
Reduzzi, M. et al. Direct temporal characterization of sub-3-fs deep UV pulses generated by resonant dispersive wave emission. Opt. Express 31, 26854–26864 (2023).
Lee, J. P. et al. Few-femtosecond soft X-ray transient absorption spectroscopy with tuneable DUV-vis pump pulses. Optica 11, 1320–1323 (2024).
Andrade, J. R. C. et al. Temporal characterization of tunable few-cycle vacuum ultraviolet pulses. Nat. Photon. (2025).
Henke, B. L., Gullikson, E. M. & Davis, J. C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92. At. Data Nucl. Data Tables 54, 181–342 (1993).
Samson, J. A. R. & Haddad, G. N. Total photoabsorption cross sections of H2 from 18 to 113 eV. J. Opt. Soc. Am. B 11, 277–279 (1994).
Svirplys, E. et al. Plasma lens for focusing attosecond pulses. Zenodo https://doi.org/10.5281/zenodo.15180960 (2025).