Fox-Kemper, B. et al. Ocean, Cryosphere, and Sea Level Change 1211–1362 (Intergovernmental Panel on Climate Change, Cambridge Univ. Press, 2021).
Bourquin, M. et al. The microbiome of cryospheric ecosystems. Nat. Commun. 13, 3087 (2022). This data synthesis paper surveys microbial community composition across different cryosphere habitats represented in existing sequence databases.
Boetius, A., Anesio, A. M., Deming, J. W., Mikucki, J. A. & Rapp, J. Z. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat. Rev. Microbiol. 13, 677–690 (2015).
Margesin, R. & Collins, T. Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge. Appl. Microbiol. Biotechnol. 103, 2537–2549 (2019).
Jansson, J. K. & Taş, N. The microbial ecology of permafrost. Nat. Rev. Microbiol. 12, 414–425 (2014).
Liu, Y. et al. Advances in cold-adapted enzymes derived from microorganisms. Front. Microbiol. 14, 1152847 (2023).
Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3, 168 (2022).
Smith, S. L., O’Neill, H. B., Isaksen, K., Noetzli, J. & Romanovsky, V. E. The changing thermal state of permafrost. Nat. Rev. Earth Environ. 3, 10–23 (2022).
Antell, G. T. & Saupe, E. E. Bottom-up controls, ecological revolutions and diversification in the oceans through time. Curr. Biol. 31, R1237–R1251 (2021).
Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).
Anesio, A. M., Lutz, S., Chrismas, N. A. M. & Benning, L. G. The microbiome of glaciers and ice sheets. npj Biofilms Microbiomes 3, 10 (2017).
Tedstone, A. J. et al. Algal growth and weathering crust state drive variability in western Greenland Ice Sheet ice albedo. Cryosphere 14, 521–538 (2020).
Hassan, S. et al. Microbial oases in the ice: a state-of-the-art review on cryoconite holes as diversity hotspots and their scientific connotations. Environ. Res. 252, 118963 (2024).
Bradley, J. A. et al. Active and dormant microorganisms on glacier surfaces. Geobiology 21, 244–261 (2023).
Jensen, M. B., Turpin-Jelfs, T., Tranter, M., Benning, L. G. & Anesio, A. M. Photophysiological response of glacier ice algae to abiotic stressors. Front. Geochem. 2, 1436488 (2024).
Rassner, S. M. E. et al. The distinctive weathering crust habitat of a High Arctic glacier comprises discrete microbial micro-habitats. Environ. Microbiol. 26, e16617 (2024). This study surveys the microbial diversity in different microhabitats within the weathering crust.
Pittino, F. et al. Functional and taxonomic diversity of anaerobes in supraglacial microbial communities. Microbiol. Spectr. 11, e0100422 (2023).
Murakami, T. et al. Metagenomics reveals global-scale contrasts in nitrogen cycling and cyanobacterial light-harvesting mechanisms in glacier cryoconite. Microbiome 10, 50 (2022).
Faber, Q., Davis, C. & Christner, B. Metagenomic inference of microbial community composition and function in the weathering crust aquifer of a temperate glacier. Front. Microbiomes 3, 1488744 (2024).
Segawa, T. et al. Redox stratification within cryoconite granules influences the nitrogen cycle on glaciers. FEMS Microbiol. Ecol. 96, fiaa199 (2020).
Perini, L. et al. Giant viral signatures on the Greenland ice sheet. Microbiome 12, 91 (2024).
Bellas, C. M., Schroeder, D. C., Edwards, A., Barker, G. & Anesio, A. M. Flexible genes establish widespread bacteriophage pan-genomes in cryoconite hole ecosystems. Nat. Commun. 11, 4403 (2020).
Liu, Y. Q. et al. Diversity and function of mountain and polar supraglacial DNA viruses. Sci. Bull. 68, 2418–2433 (2023).
Zhong, Z. P. et al. Glacier ice archives nearly 15,000-year-old microbes and phages. Microbiome 9, 160 (2021).
Doyle, S. M. & Christner, B. C. Variation in bacterial composition, diversity, and activity across different subglacial basal ice types. Cryosphere 16, 4033–4051 (2022). This article highlights variation in community composition across different types of basal ice as well as differences between basal and englacial environments.
Varliero, G. et al. Glacier clear ice bands indicate englacial channel microbial distribution. J. Glaciol. 67, 811–823 (2021).
Dani, K. G. S., Mader, H. M., Wolff, E. W. & Wadham, J. L. Modelling the liquid-water vein system within polar ice sheets as a potential microbial habitat. Earth Planet. Sci. Lett. 333–334, 238–249 (2012).
Lamarche-Gagnon, G. et al. Greenland melt drives continuous export of methane from the ice-sheet bed. Nature 565, 73–77 (2019).
Vinšová, P. et al. The biogeochemical legacy of Arctic subglacial sediments exposed by glacier retreat. Global Biogeochem. Cycles 36, e2021GB007126 (2022).
Toubes-Rodrigo, M. et al. Active microbial ecosystem in glacier basal ice fuelled by iron and silicate comminution-derived hydrogen. Microbiol. Open 10, e1200 (2021).
Yang, Z. F. et al. H2 metabolism revealed by metagenomic analysis of subglacial sediment from East Antarctica. J. Microbiol. 57, 1095–1104 (2019).
Dunham, E. C., Dore, J. E., Skidmore, M. L., Roden, E. E. & Boyd, E. S. Lithogenic hydrogen supports microbial primary production in subglacial and proglacial environments. Proc. Natl Acad. Sci. USA 118, e2007051117 (2021).
Davis, C. L. et al. Biogeochemical and historical drivers of microbial community composition and structure in sediments from Mercer Subglacial Lake, West Antarctica. ISME Commun. 3, 8 (2023).
Vannier, P. et al. Metagenomic analyses of a microbial assemblage in a subglacial lake beneath the Vatnajokull ice cap, Iceland. Front. Microbiol. 14, 1122184 (2023).
Christner, B. C. et al. A microbial ecosystem beneath the West Antarctic ice sheet. Nature 512, 310–313 (2014).
Vick-Majors, T. J. et al. Biogeochemical connectivity between freshwater ecosystems beneath the West Antarctic Ice Sheet and the sub-ice marine environment. Global Biogeochem. Cycles https://doi.org/10.1029/2019GB006446 (2020).
Waller, R. I., Murton, J. B. & Kristensen, L. Glacier–permafrost interactions: processes, products and glaciological implications. Sediment. Geol. 255-256, 1–28 (2012).
Braun, K. N. & Andresen, C. G. Heterogeneity in ice-wedge permafrost degradation revealed across spatial scales. Remote Sens. Environ. 311, 114299 (2024).
Bottos, E. M. et al. Dispersal limitation and thermodynamic constraints govern spatial structure of permafrost microbial communities. FEMS Microbiol. Ecol. 94, fiy110 (2018).
Gilichinsky, D. et al. Biodiversity of cryopegs in permafrost. FEMS Microbiol. Ecol. 53, 117–128 (2005).
Rapp, J. Z., Sullivan, M. B. & Deming, J. W. Divergent genomic adaptations in the microbiomes of Arctic subzero sea-ice and cryopeg brines. Front. Microbiol. 12, 701186 (2021).
Wu, X. et al. Comparative metagenomics of the active layer and permafrost from low-carbon soil in the Canadian High Arctic. Environ. Sci. Technol. 55, 12683–12693 (2021).
Hultman, J. et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521, 208–212 (2015).
Waldrop, M. P. et al. Permafrost microbial communities and functional genes are structured by latitudinal and soil geochemical gradients. ISME J. 17, 1224–1235 (2023). This study compares 133 permafrost metagenomes from across North America, Europe and Asia to globally assess permafrost microbial community composition and function.
Kang, L. et al. Metagenomic insights into microbial community structure and metabolism in alpine permafrost on the Tibetan Plateau. Nat. Commun. 15, 5920 (2024).
Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).
Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).
Scheel, M. et al. Abrupt permafrost thaw triggers activity of copiotrophs and microbiome predators. FEMS Microbiol. Ecol. 99, fiad123 (2023).
Blume-Werry, G., Klaminder, J., Krab, E. J. & Monteux, S. Ideas and perspectives: alleviation of functional limitations by soil organisms is key to climate feedbacks from arctic soils. Biogeosciences 20, 1979–1990 (2023).
Ficetola, G. F. et al. The development of terrestrial ecosystems emerging after glacier retreat. Nature 632, 336–342 (2024). This global study uses structural equation modelling to characterize microbial succession in deglaciating ecosystems.
Franzetti, A. et al. Early ecological succession patterns of bacterial, fungal and plant communities along a chronosequence in a recently deglaciated area of the Italian Alps. FEMS Microbiol. Ecol. 96, fiaa165 (2020).
Varliero, G., Anesio, A. M. & Barker, G. L. A. A taxon-wise insight into rock weathering and nitrogen fixation functional profiles of proglacial systems. Front. Microbiol. 12, 627437 (2021).
Nash, M. V. et al. Metagenomic insights into diazotrophic communities across Arctic glacier forefields. FEMS Microbiol. Ecol. 94, fiy114 (2018).
Trejos-Espeleta, J. C. et al. Principal role of fungi in soil carbon stabilization during early pedogenesis in the high Arctic. Proc. Natl Acad. Sci. USA 121, e2402689121 (2024).
Chiri, E., Nauer, P. A., Henneberger, R., Zeyer, J. & Schroth, M. H. Soil–methane sink increases with soil age in forefields of Alpine glaciers. Soil Biol. Biochem. 84, 83–95 (2015).
Tian, C. et al. Microbial community structure and metabolic potential at the initial stage of soil development of the glacial forefields in Svalbard. Microb. Ecol. 86, 933–946 (2023).
Deming, J. W. & Eric Collins, R. in Sea Ice (ed. Thomas, D. N.) 326–351 (Wiley, 2017).
Lund-Hansen, L. C. et al. Sea ice as habitat for microalgae, bacteria, virus, fungi, meio- and macrofauna: a review of an extreme environment. Polar Biol. 47, 1275–1306 (2024). This recent review describes the physical environment of sea ice and the microorganisms that colonize this unique habitat.
Hatam, I. et al. Distinct bacterial assemblages reside at different depths in Arctic multiyear sea ice. FEMS Microbiol. Ecol. 90, 115–125 (2014).
Cono, V. L. et al. Wintertime simulations induce changes in the structure, diversity and function of Antarctic sea ice-associated microbial communities. Microorganisms 10, 623 (2022).
Arrigo, K. R. Sea ice ecosystems. Annu. Rev. Mar. Sci. 6, 439–467 (2014).
Frey, K. E. et al. Arctic Report Card 2016: Arctic Ocean Primary Productivity (National Oceanic and Atmospheric Administration, 2016).
Bowman, J. S. The relationship between sea ice bacterial community structure and biogeochemistry: a synthesis of current knowledge and known unknowns. Elementa https://doi.org/10.12952/journal.elementa.000072 (2015).
Koch, C. W. et al. Year-round utilization of sea ice-associated carbon in Arctic ecosystems. Nat. Commun. 14, 1964 (2023). This study emphasizes the perennial importance of ice algal carbon to the Arctic food web and highlights expected shifts with declining seasonal sea ice.
Teng, Z.-J. et al. Biogeographic traits of dimethyl sulfide and dimethylsulfoniopropionate cycling in polar oceans. Microbiome 9, 207 (2021).
Thiele, S., Storesund, J. E., Fernández-Méndez, M., Assmy, P. & Øvreås, L. A winter-to-summer transition of bacterial and archaeal communities in Arctic sea ice. Microorganisms 10, 1618 (2022).
Hatam, I., Lange, B., Beckers, J., Haas, C. & Lanoil, B. Bacterial communities from Arctic seasonal sea ice are more compositionally variable than those from multi-year sea ice. ISME J. 10, 2543–2552 (2016).
Eronen-Rasimus, E. et al. An active bacterial community linked to high chl-a concentrations in Antarctic winter-pack ice and evidence for the development of an anaerobic sea-ice bacterial community. ISME J. 11, 2345–2355 (2017).
Rysgaard, S., Glud, R. N., Sejr, M. K., Blicher, M. E. & Stahl, H. J. Denitrification activity and oxygen dynamics in Arctic sea ice. Polar Biol. 31, 527–537 (2008).
Keuschnig, C. et al. Selection processes of Arctic seasonal glacier snowpack bacterial communities. Microbiome 11, 35 (2023).
Antony, R. et al. Microbial communities associated with Antarctic snow pack and their biogeochemical implications. Microbiol. Res. 192, 192–202 (2016).
Winkel, M. et al. Seasonality of glacial snow and ice microbial communities. Front. Microbiol. 13, 876848 (2022).
Malard, L. A. et al. Snow microorganisms colonise Arctic soils following snow melt. Microb. Ecol. 86, 1661–1675 (2023).
Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).
Vonk, J. E. et al. The land–ocean Arctic carbon cycle. Nat. Rev. Earth Environ. 6, 86–105 (2025).
Schuur, E. A. G. et al. Permafrost and climate change: carbon cycle feedbacks from the warming Arctic. Annu. Rev. Environ. Resour. 47, 343–371 (2022).
Hood, E., Battin, T. J., Fellman, J., O’Neel, S. & Spencer, R. G. M. Storage and release of organic carbon from glaciers and ice sheets. Nat. Geosci. 8, 91–96 (2015).
Wadham, J. L. et al. Ice sheets matter for the global carbon cycle. Nat. Commun. 10, 3567 (2019).
Kou, D. et al. Spatially-explicit estimate of soil nitrogen stock and its implication for land model across Tibetan alpine permafrost region. Sci. Total Environ. 650, 1795–1804 (2019).
Strauss, J. et al. A globally relevant stock of soil nitrogen in the Yedoma permafrost domain. Nat. Commun. 13, 6074 (2022).
Wolff, E. W. Ice sheets and nitrogen. Philos. Trans. R. Soc. B Biol. Sci. 368, 20130127 (2013).
Moon, T. A., Druckenmiller, M. L. & Thoman, R. L. Arctic Report Card 2024 (National Oceanic and Atmospheric Administration, 2024).
Harden, J. W. et al. Field information links permafrost carbon to physical vulnerabilities of thawing. Geophys. Res. Lett. https://doi.org/10.1029/2012GL051958 (2012).
Mueller, C. W. et al. Large amounts of labile organic carbon in permafrost soils of northern Alaska. Global Change Biol. 21, 2804–2817 (2015).
Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135–140 (2018).
Rawlins, M. A. & Karmalkar, A. V. Regime shifts in Arctic terrestrial hydrology manifested from impacts of climate warming. Cryosphere 18, 1033–1052 (2024).
Hood, E. et al. Glaciers as a source of ancient and labile organic matter to the marine environment. Nature 462, 1044–1047 (2009).
He, M. et al. Priming effect stimulates carbon release from thawed permafrost. Global Change Biol. 29, 4638–4651 (2023).
Bianchi, T. S. The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. Proc. Natl Acad. Sci. USA 108, 19473–19481 (2011).
Darcy, J. L. et al. Phosphorus, not nitrogen, limits plants and microbial primary producers following glacial retreat. Sci. Adv. 4, eaaq0942 (2018).
Burpee, B., Saros, J., Northington, R. & Simon, K. Microbial nutrient limitation in Arctic lakes in a permafrost landscape of southwest Greenland. Biogeosciences 13, 365–374 (2016).
Sørensen, H. L., Thamdrup, B., Jeppesen, E., Rysgaard, S. & Glud, R. N. Nutrient availability limits biological production in Arctic sea ice melt ponds. Polar Biol. 40, 1593–1606 (2017).
Zhang, D. et al. Microbial nitrogen and phosphorus co-limitation across permafrost region. Global Change Biol. 29, 3910–3923 (2023). This article identifies both nitrogen and phosphorus as limiting factors for microbial activity in permafrost and tundra ecosystems.
Schmidt, S. K. et al. Microbial biogeochemistry and phosphorus limitation in cryoconite holes on glaciers across the Taylor Valley, McMurdo Dry Valleys, Antarctica. Biogeochemistry 158, 313–326 (2022).
Guo, L. et al. Acceleration of phosphorus weathering under warm climates. Sci. Adv. 10, eadm7773 (2024).
Reyes, F. R. & Lougheed, V. L. Rapid nutrient release from permafrost thaw in arctic aquatic ecosystems. Arct. Antarct. Alp. Res. 47, 35–48 (2015).
Keuper, F. et al. A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands. Global Change Biol. 18, 1998–2007 (2012).
Wang, S., Bailey, D., Lindsay, K., Moore, J. K. & Holland, M. Impact of sea ice on the marine iron cycle and phytoplankton productivity. Biogeosciences 11, 4713–4731 (2014).
Oziel, L. et al. Climate change and terrigenous inputs decrease the efficiency of the future Arctic Ocean’s biological carbon pump. Nat. Clim. Change 15, 171–179 (2025).
von Friesen, L. W. & Riemann, L. Nitrogen fixation in a changing Arctic Ocean: an overlooked source of nitrogen? Front. Microbiol. 11, 596426 (2020).
Koven, C. D., Hugelius, G., Lawrence, D. M. & Wieder, W. R. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Change 7, 817–822 (2017). This study shows that Q10 values at in situ conditions are higher in polar environments, indicating a higher sensitivity to warming temperatures.
Leles, S. G. & Levine, N. M. Mechanistic constraints on the trade-off between photosynthesis and respiration in response to warming. Sci. Adv. 9, eadh8043 (2023).
Barton, S. et al. Evolutionary temperature compensation of carbon fixation in marine phytoplankton. Ecol. Lett. 23, 722–733 (2020).
Maes, S. L. et al. Environmental drivers of increased ecosystem respiration in a warming tundra. Nature 629, 105–113 (2024).
Jeong, S.-J. et al. Accelerating rates of Arctic carbon cycling revealed by long-term atmospheric CO2 measurements. Sci. Adv. 4, eaao1167 (2018).
Zheng, J. et al. Impacts of temperature and soil characteristics on methane production and oxidation in Arctic tundra. Biogeosciences 15, 6621–6635 (2018).
Kane, E. S. et al. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen. Soil Biol. Biochem. 58, 50–60 (2013).
Maslov, M. N. & Maslova, O. A. Nitrogen limitation of microbial activity in alpine tundra soils along an environmental gradient: intra-seasonal variations and effect of rising temperature. Soil Biol. Biochem. 156, 108234 (2021).
Maslov, M. N. & Maslova, O. A. Soil nitrogen mineralization and its sensitivity to temperature and moisture in temperate peatlands under different land-use management practices. CATENA 210, 105922 (2022).
Fowler, D. et al. Effects of global change during the 21st century on the nitrogen cycle. Atmos. Chem. Phys. 15, 13849–13893 (2015).
Wang, J. et al. Energetic supply regulates heterotrophic nitrogen fixation along a glacial chronosequence. Soil Biol. Biochem. 154, 108150 (2021).
Qin, S. et al. Temperature sensitivity of permafrost carbon release mediated by mineral and microbial properties. Sci. Adv. 7, eabe3596 (2021).
Schädel, C. et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat. Clim. Change 6, 950–953 (2016).
Li, Y. et al. Genomic insights into redox-driven microbial processes for carbon decomposition in thawing Arctic soils and permafrost. mSphere 9, e00259-00224 (2024). This study demonstrates how microbial community composition and activity following permafrost thaw depend on the redox potential of the thawed habitat.
Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).
van Bodegom, P. M., Scholten, J. C. M. & Stams, A. J. M. Direct inhibition of methanogenesis by ferric iron. FEMS Microbiol. Ecol. 49, 261–268 (2004).
Čapek, P. et al. The effect of warming on the vulnerability of subducted organic carbon in arctic soils. Soil. Biol. Biochem. 90, 19–29 (2015).
Livingstone, S. J. et al. Subglacial lakes and their changing role in a warming climate. Nat. Rev. Earth Environ. 3, 106–124 (2022).
Singleton, C. M. et al. Methanotrophy across a natural permafrost thaw environment. ISME J. 12, 2544–2558 (2018).
Michaud, A. B. et al. Microbial oxidation as a methane sink beneath the West Antarctic Ice Sheet. Nat. Geosci. 10, 582–586 (2017).
Herndon, E., Kinsman-Costello, L. & Godsey, S. in Biogeochemical Cycles: Ecological Drivers and Environmental Impact (eds Dontsova, K. et al.) 245–265 (American Geophysical Union, 2020).
Lee, J. et al. Attenuation of methane oxidation by nitrogen availability in arctic tundra soils. Environ. Sci. Technol. 57, 2647–2659 (2023).
Tájmel, D., Cruz-Paredes, C. & Rousk, J. Heat wave-induced microbial thermal trait adaptation and its reversal in the Subarctic. Global Change Biol. 30, e17032 (2024).
Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).
Bradford, M. A. et al. Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation. Nat. Ecol. Evol. 3, 223–231 (2019).
Heslop, J. K., Walter Anthony, K. M., Grosse, G., Liebner, S. & Winkel, M. Century-scale time since permafrost thaw affects temperature sensitivity of net methane production in thermokarst-lake and talik sediments. Sci. Total Environ. 691, 124–134 (2019).
Walker, T. W. N. et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Change 8, 885–889 (2018).
Li, J. et al. Reduced carbon use efficiency and increased microbial turnover with soil warming. Global Change Biol. 25, 900–910 (2019).
Li, L. et al. Asymmetric winter warming reduces microbial carbon use efficiency and growth more than symmetric year-round warming in alpine soils. Proc. Natl Acad. Sci. USA 121, e2401523121 (2024).
Qin, S., Zhang, D., Wei, B. & Yang, Y. Dual roles of microbes in mediating soil carbon dynamics in response to warming. Nat. Commun. 15, 6439 (2024). This study shows how rapid increases in microbial respiration following warming may attenuate over time as microbial carbon use efficiency decreases.
Fanin, N. et al. Soil enzymes in response to climate warming: mechanisms and feedbacks. Funct. Ecol. 36, 1378–1395 (2022).
Chen, J. et al. Soil carbon loss with warming: new evidence from carbon-degrading enzymes. Global Change Biol. 26, 1944–1952 (2020).
Feng, J. et al. Long-term warming in Alaska enlarges the diazotrophic community in deep soils. mBio 10, e02521-18 (2019).
Bárcena, T. G., Yde, J. C. & Finster, K. W. Methane flux and high-affinity methanotrophic diversity along the chronosequence of a receding glacier in Greenland. Ann. Glaciol. 51, 23–31 (2010).
Ernakovich, J. G. et al. Microbiome assembly in thawing permafrost and its feedbacks to climate. Global Change Biol. 28, 5007–5026 (2022).
Kohler, T. J. et al. Global emergent responses of stream microbial metabolism to glacier shrinkage. Nat. Geosci. 17, 309–315 (2024).
Eronen-Rasimus, E. et al. Ice formation and growth shape bacterial community structure in Baltic Sea drift ice. FEMS Microbiol. Ecol. 91, 1–13 (2014).
Biskaborn, B. K. et al. Permafrost is warming at a global scale. Nat. Commun. 10, 264 (2019).
Stackhouse, B. T. et al. Effects of simulated spring thaw of permafrost from mineral cryosol on CO2 emissions and atmospheric CH4 uptake. J. Geophys. Res. Biogeosci. 120, 1764–1784 (2015).
Schuur, E. A. G. et al. Ecosystem and soil respiration radiocarbon detects old carbon release as a fingerprint of warming and permafrost destabilization with climate change. Philos. Trans. R. Soc. A 381, 20220201 (2023).
Voigt, C. et al. Nitrous oxide emissions from permafrost-affected soils. Nat. Rev. Earth Environ. 1, 420–434 (2020).
Romanowicz, K. J., Crump, B. C. & Kling, G. W. Genomic evidence that microbial carbon degradation is dominated by iron redox metabolism in thawing permafrost. ISME Commun. 3, 124 (2023).
Tarbier, B., Hugelius, G., Kristina Sannel, A. B., Baptista-Salazar, C. & Jonsson, S. Permafrost thaw increases methylmercury formation in subarctic Fennoscandia. Environ. Sci. Technol. 55, 6710–6717 (2021).
O’Donnell, J. A. et al. Metal mobilization from thawing permafrost to aquatic ecosystems is driving rusting of Arctic streams. Commun. Earth Environ. 5, 268 (2024).
Barbato, R. A. et al. Not all permafrost microbiomes are created equal: influence of permafrost thaw on the soil microbiome in a laboratory incubation study. Soil Biol. Biochem. 167, 108605 (2022).
Lee, H., Schuur, E. A. G., Inglett, K. S., Lavoie, M. & Chanton, J. P. The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate. Global Change Biol. 18, 515–527 (2012).
Walter Anthony, K. M. et al. Upland Yedoma taliks are an unpredicted source of atmospheric methane. Nat. Commun. 15, 6056 (2024).
Perryman, C. R. et al. Thaw transitions and redox conditions drive methane oxidation in a permafrost peatland. J. Geophys. Res. Biogeosci. 125, e2019JG005526 (2020).
Duspayev, A., Flanner, M. G. & Riihelä, A. Earth’s sea ice radiative effect from 1980 to 2023. Geophys. Res. Lett. https://doi.org/10.1029/2024GL109608 (2024).
Feng, S. A., Cook, J. M., Anesio, A. M., Benning, L. G. & Tranter, M. Long time series (1984–2020) of albedo variations on the Greenland ice sheet from harmonized Landsat and Sentinel 2 imagery. J. Glaciol. 69, 1225–1240 (2023).
McCutcheon, J. et al. Mineral phosphorus drives glacier algal blooms on the Greenland Ice Sheet. Nat. Commun. 12, 673614 (2021).
Williamson, C. J. et al. Macro-nutrient stoichiometry of glacier algae from the southwestern margin of the Greenland Ice Sheet. Front. Plant. Sci. 12, 673614 (2021).
Hotaling, S. et al. Biological albedo reduction on ice sheets, glaciers, and snowfields. Earth-Sci. Rev. 220, 103728 (2021).
Maréchal, E. & Nedbalová, L. Editorial: ice and snow algae. Front. Plant Sci. 13, 868467 (2022).
Halbach, L. et al. Single-cell imaging reveals efficient nutrient uptake and growth of microalgae darkening the Greenland Ice Sheet. Nat. Commun. 16, 1521 (2025).
Millar, J. L. et al. Alpine glacier algal bloom during a record melt year. Front. Microbiol. 15, 1356376 (2024).
Khan, A. L., Dierssen, H. M., Scambos, T. A., Höfer, J. & Cordero, R. R. Spectral characterization, radiative forcing and pigment content of coastal Antarctic snow algae: approaches to spectrally discriminate red and green communities and their impact on snowmelt. Cryosphere 15, 133–148 (2021).
Chevrollier, L. A. et al. Light absorption and albedo reduction by pigmented microalgae on snow and ice. J. Glaciol. 69, 333–341 (2023).
Cook, J. M. et al. Glacier algae accelerate melt rates on the south-western Greenland Ice Sheet. Cryosphere 14, 309–330 (2020).
Williamson, C. J. et al. Algal photophysiology drives darkening and melt of the Greenland Ice Sheet. Proc. Natl Acad. Sci. USA 117, 5694–5705 (2020). This article describes the biological contribution to albedo reduction on the Greenland Ice Sheet.
Milner, A. M. et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl Acad. Sci. USA 114, 9770–9778 (2017).
Nardelli, S. C., Gray, P. C., Stammerjohn, S. E. & Schofield, O. Characterizing coastal phytoplankton seasonal succession patterns on the West Antarctic Peninsula. Limnol. Oceanogr. 68, 845–861 (2023).
Nielsen, J. M. et al. Spring phytoplankton bloom phenology during recent climate warming on the Bering Sea shelf. Prog. Oceanogr. 220, 103176 (2024).
Ferreira, A. et al. Climate change is associated with higher phytoplankton biomass and longer blooms in the West Antarctic Peninsula. Nat. Commun. 15, 6536 (2024).
Ardyna, M. & Arrigo, K. R. Phytoplankton dynamics in a changing Arctic Ocean. Nat. Clim. Change 10, 892–903 (2020).
Castagno, A. P. et al. Increased sea ice melt as a driver of enhanced Arctic phytoplankton blooming. Global Change Biol. 29, 5087–5098 (2023). This study investigates an unprecedented phytoplankton bloom in Fram Strait, highlighting a two-decade trend of intensifying Arctic primary production.
Ardyna, M. et al. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys. Res. Lett. 41, 6207–6212 (2014).
Renaud, P. E. et al. Extreme mismatch between phytoplankton and grazers during Arctic spring blooms and consequences for the pelagic food-web. Prog. Oceanogr. 229, 103365 (2024).
Castellani, G. et al. Shine a light: under-ice light and its ecological implications in a changing Arctic Ocean. Ambio 51, 307–317 (2022).
Ardyna, M. et al. Wildfire aerosol deposition likely amplified a summertime Arctic phytoplankton bloom. Commun. Earth Environ. 3, 201 (2022).
Lefebvre, K. A. et al. Prevalence of algal toxins in Alaskan marine mammals foraging in a changing arctic and subarctic environment. Harmful Algae 55, 13–24 (2016).
Tang, J. et al. Occurrence and distribution of phycotoxins in the Antarctic Ocean. Mar. Pollut. Bull. 201, 116250 (2024).
McKenzie, C. H. et al. Three decades of Canadian marine harmful algal events: phytoplankton and phycotoxins of concern to human and ecosystem health. Harmful Algae 102, 101852 (2021).
Fachon, E. et al. Tracking a large-scale and highly toxic Arctic algal bloom: rapid detection and risk communication. Limnol. Oceanogr. Lett. 10, 62–72 (2024).
Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).
Metcalfe, D. B. et al. Patchy field sampling biases understanding of climate change impacts across the Arctic. Nat. Ecol. Evol. 2, 1443–1448 (2018). This article calls for wider geographical sampling to better account for spatial variability across the cryosphere.
Maure, D., Kittel, C., Lambin, C., Delhasse, A. & Fettweis, X. Spatially heterogeneous effect of climate warming on the Arctic land ice. Cryosphere 17, 4645–4659 (2023).
Pritchard, H. D. Global data gaps in our knowledge of the terrestrial cryosphere. Front. Clim. 3, 689823 (2021).
Ezzat, L. et al. Diversity and biogeography of the bacterial microbiome in glacier-fed streams. Nature 637, 622–630 (2025).
Reuss-Schmidt, K. et al. Understanding spatial variability of methane fluxes in Arctic wetlands through footprint modelling. Environ. Res. Lett. 14, 125010 (2019).
Lyu, Z. et al. Seasonal dynamics of Arctic soils: capturing year-round processes in measurements and soil biogeochemical models. Earth-Sci. Rev. 254, 104820 (2024). This review synthesizes recent findings on seasonal changes in Arctic soil microbial activity and calls for further research into microbial activity during the winter season.
Poppeliers, S. W. M., Hefting, M., Dorrepaal, E. & Weedon, J. T. Functional microbial ecology in Arctic soils: the need for a year-round perspective. FEMS Microbiol. Ecol. 98, fiac134 (2022).
Baker, C. C. M., Barker, A. J., Douglas, T. A., Doherty, S. J. & Barbato, R. A. Seasonal variation in near-surface seasonally thawed active layer and permafrost soil microbial communities. Environ. Res. Lett. 18, 055001 (2023).
Vigneron, A. et al. Contrasting winter versus summer microbial communities and metabolic functions in a permafrost thaw lake. Front. Microbiol. 10, 1656 (2019).
Pittino, F. et al. Bacterial communities of cryoconite holes of a temperate alpine glacier show both seasonal trends and year-to-year variability. Ann. Glaciol. 59, 1–9 (2018).
Liu, S. et al. Seasonal and spatial variations in riverine DOC exports in permafrost-dominated Arctic river basins. J. Hydrol. 612, 128060 (2022).
Hopwood, M. J. et al. How does glacier discharge affect marine biogeochemistry and primary production in the Arctic? Cryosphere 14, 1347–1383 (2020).
Pedron, S. A. et al. More snow accelerates legacy carbon emissions from Arctic permafrost. AGU Adv. 4, e2023AV000942 (2023).
Natali, S. M. et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Change 9, 852–857 (2019).
Zona, D. et al. Cold season emissions dominate the Arctic tundra methane budget. Proc. Natl Acad. Sci. USA 113, 40–45 (2016).
Trubl, G. et al. Active virus–host interactions at sub-freezing temperatures in Arctic peat soil. Microbiome 9, 208 (2021).
Kraemer, S. A., Ramachandran, A., Onana, V. E., Li, W. K. W. & Walsh, D. A. A multiyear time series (2004–2012) of bacterial and archaeal community dynamics in a changing Arctic Ocean. ISME Commun. 4, ycad004 (2024).
Henry, G. H. R. et al. The International Tundra Experiment (ITEX): 30 years of research on tundra ecosystems. Arct. Sci. 8, 550–571 (2022).
Bagshaw, E. A. et al. Response of Antarctic cryoconite microbial communities to light. FEMS Microbiol. Ecol. 92, fiw076 (2016).
Hughes, B. B. et al. Long-term studies contribute disproportionately to ecology and policy. BioScience 67, 271–281 (2017).
Randolph Glacier Inventory Consortium. Randolph Glacier Inventory — a dataset of global glacier outlines. Natl Snow Ice Data Cent. https://doi.org/10.7265/CC6E-ZP12 (2012).
Fetterer, F. et al. Sea ice index, version 4. Natl Snow Ice Data Cent. https://doi.org/10.7265/a98x-0f50 (2025).
Heginbottom, J., Brown, J., Ferrians, O. & Melnikov, E. S. Circum-Arctic map of permafrost and ground-ice conditions, version 2. Natl Snow Ice Data Cent. https://doi.org/10.7265/SKBG-KF16 (2002).
Raymond-Bouchard, I. et al. Conserved genomic and amino acid traits of cold adaptation in subzero-growing Arctic permafrost bacteria. FEMS Microbiol. Ecol. 94, fiy023 (2018).
Mackelprang, R. et al. Microbial survival strategies in ancient permafrost: insights from metagenomics. ISME J. 11, 2305–2318 (2017).
Bakermans, C. in Psychrophiles: From Biodiversity to Biotechnology (ed. Margesin, R.) 21–38 (Springer International Publishing, 2017).
Junge, K., Eicken, H. & Deming, J. W. Bacterial activity at −2 to −20 degrees C in Arctic wintertime sea ice. Appl. Environ. Microbiol. 70, 550–557 (2004).
Panikov, N. S., Flanagan, P. W., Oechel, W. C., Mastepanov, M. A. & Christensen, T. R. Microbial activity in soils frozen to below −39 °C. Soil Biol. Biochem. 38, 785–794 (2006).
Mykytczuk, N. C. S. et al. Bacterial growth at −15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J. 7, 1211–1226 (2013).
Andrzejowska, A., Hájek, J., Puhovkin, A., Harańczyk, H. & Barták, M. Freezing temperature effects on photosystem II in Antarctic lichens evaluated by chlorophyll fluorescence. J. Plant Physiol. 294, 154192 (2024).
Magnuson, E. et al. Active lithoautotrophic and methane-oxidizing microbial community in an anoxic, sub-zero, and hypersaline High Arctic spring. ISME J. 16, 1798–1808 (2022).
Mikucki, J. A. & Priscu, J. C. Bacterial diversity associated with Blood Falls, a subglacial outflow from the Taylor Glacier, Antarctica. Appl. Environ. Microbiol. 73, 4029–4039 (2007).
Lee, H. B. Y. et al. Microbial assemblages and associated biogeochemical processes in Lake Bonney, a permanently ice-covered lake in the McMurdo Dry Valleys, Antarctica. Environ. Microbiome 19, 60 (2024).
Wood, C. et al. Active microbiota persist in dry permafrost and active layer from Elephant Head, Antarctica. ISME Commun. 4, ycad002 (2024).
Goordial, J. et al. Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica. ISME J. 10, 1613–1624 (2016).