Ryan, P. G. & Moloney, C. L. Plastic and other artefacts on South African beaches: temporal trends in abundance and composition. S. Afr. J. Sci. 86, 450–452 (1990).
Thompson, R. C. et al. Lost at sea: where is all the plastic? Science 304, 83–838 (2004).
Thompson, R. C. et al. Twenty years of microplastics pollution research—what have we learned? Science 386, eadl2746 (2024). This article reviews two decades of research on MP pollution, potential sources, environmental distribution, ecological impacts, human health risks and detection methods.
Allen, D. et al. Microplastics and nanoplastics in the marine–atmosphere environment. Nat. Rev. Earth Environ. 3, 393–405 (2022).
Browne, M. A., Galloway, T. & Thompson, R. Microplastic—an emerging contaminant of potential concern? Integr. Environ. Assess. Manage. 3, 559–561 (2007).
World Health Organization. Dietary and inhalation exposure to nano- and microplastic particles and potential implications for human health; https://www.who.int/publications/i/item/9789240054608 (2022).
Ross, P. S. et al. Pervasive distribution of polyester fibres in the Arctic Ocean is driven by Atlantic inputs. Nat. Commun. 12, 106 (2021).
Zhang, S. et al. Distribution characteristics of microplastics in surface and subsurface Antarctic seawater. Sci. Total. Environ. 838, 156051 (2022).
Peng, G., Bellerby, R., Zhang, F., Sun, X. & Li, D. The ocean’s ultimate trashcan: hadal trenches as major depositories for plastic pollution. Water Res. 168, 115121 (2020).
Napper, I. E. et al. Reaching new heights in plastic pollution—preliminary findings of microplastics on Mount Everest. One Earth 3, 621–630 (2020).
Wang, M. et al. Oligomer nanoparticle release from polylactic acid plastics catalysed by gut enzymes triggers acute inflammation. Nat. Nanotechnol. 18, 403–411 (2023).
Sun, X. D. et al. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nat. Nanotechnol. 15, 755–760 (2020).
Zhou, Y. et al. In vitro toxicity and modeling reveal nanoplastic effects on marine bivalves. ACS Nano 18, 17228–17239 (2024).
Zhao, J. et al. Microplastic fragmentation by rotifers in aquatic ecosystems contributes to global nanoplastic pollution. Nat. Nanotechnol. 19, 406–414 (2024). This article presents different analytical techniques for the identification and quantification of MNPs in organisms.
Ding, J. et al. Elder fish means more microplastics? Alaska pollock microplastic story in the Bering Sea. Sci. Adv. 9, eadf5897 (2023).
Li, P. & Liu, J. Micro(nano)plastics in the human body: sources, occurrences, fates, and health risks. Environ. Sci. Technol. 58, 3065–3078 (2024).
Lowry, G. et al. Why was my paper rejected without review? Environ. Sci. Technol. 54, 11641–11644 (2020).
Yang, L., Yuan, L. & Wang, W. X. Visible combined near-infrared in situ imaging revealed dynamic effects of microplastic fibers and beads in zebrafish. Environ. Sci. Technol. 58, 16269–16281 (2024).
Li, B. et al. Fish ingest microplastics unintentionally. Environ. Sci. Technol. 55, 10471–10479 (2021).
Thornton et al. Characterizing microplastic hazards: which concentration metrics and particle characteristics are most informative for understanding toxicity in aquatic organisms? Microplast. Nanoplast. 2, 20 (2022).
Xie, L. et al. Automatic identification of individual nanoplastics by Raman spectroscopy based on machine learning. Environ. Sci. Technol. 57, 18203–18214 (2023).
Nor, N. H. M. & Obbard, J. P. Microplastics in Singapore’s coastal mangrove ecosystems. Mar. Pollut. Bull. 79, 278–283 (2014).
Yang, J. et al. Microplastics in different water samples (seawater, freshwater, and wastewater): methodology approach for characterization using micro-FTIR spectroscopy. Water Res. 232, 119711 (2023).
Imhof, H. K., Schmid, J., Niessner, R., Ivleva, N. P. & Laforsch, C. A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments. Limnol. Oceanogr.: Methods 10, 524–537 (2012).
Moses, S. R. et al. Comparison of two rapid automated analysis tools for large FTIR microplastic datasets. Anal. Bioanal. Chem. 415, 2975–2987 (2023).
Piarulli, S. et al. Rapid and direct detection of small microplastics in aquatic samples by a new near infrared hyperspectral imaging (NIR-HSI) method. Chemosphere 260, 127655 (2020).
Su, Y. et al. Steam disinfection releases micro(nano)plastics from silicone-rubber baby teats as examined by optical photothermal infrared microspectroscopy. Nat. Nanotechnol. 17, 76–85 (2022).
Dong, M., She, Z., Xiong, X., Ouyang, G. & Luo, Z. Automated analysis of microplastics based on vibrational spectroscopy: are we measuring the same metrics? Anal. Bioanal. Chem. 414, 3359–3372 (2022).
Ruan, X. et al. Rapid detection of nanoplastics down to 20 nm in water by surface-enhanced Raman spectroscopy. J. Hazard. Mater. 462, 132702 (2024).
Fang, C. et al. Identification and visualisation of microplastics/nanoplastics by Raman imaging (ii): smaller than the diffraction limit of laser? Water Res. 183, 116046 (2020).
Wang, C. et al. Natural solar irradiation produces fluorescent and biodegradable nanoplastics. Environ. Sci. Technol. 57, 6626–6635 (2023).
Oßmann, B. E. et al. Small-sized microplastics and pigmented particles in bottled mineral water. Water Res. 141, 307–316 (2018).
Liu, Y. et al. Overcoming the fluorescent interference during Raman spectroscopy detection of microplastics. Sci. Total. Environ. 897, 165333 (2023).
Ye, Y., Yu, K. & Zhao, Y. The development and application of advanced analytical methods in microplastics contamination detection: a critical review. Sci. Total. Environ. 818, 151851 (2022).
Fischer, M. & Scholz-Böttcher, B. M. Simultaneous trace identification and quantification of common types of microplastics in environmental samples by pyrolysis–gas chromatography–mass spectrometry. Environ. Sci. Technol. 51, 5052–5060 (2017).
Albignac, M. et al. Tandem mass spectrometry enhances the performances of pyrolysis–gas chromatography–mass spectrometry for microplastic quantification. J. Anal. Appl. Pyrolysis 172, 105993 (2023).
Zhang, J., Wang, L. & Kannan, K. Quantitative analysis of polyethylene terephthalate and polycarbonate microplastics in sediment collected from South Korea, Japan and the USA. Chemosphere 279, 130551 (2021).
Lou, F. et al. Influence of interaction on accuracy of quantification of mixed microplastics using Py-GC/MS. J. Environ. Chem. Eng. 10, 108012 (2022).
Ruan, X. et al. Nanoplastics detected in commercial sea salt. Environ. Sci. Technol. 58, 9091–9101 (2024).
Hole, P. et al. Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA). J. Nanopart. Res. 15, 1–12 (2013).
Sarau, G. et al. Correlative microscopy and spectroscopy workflow for microplastics. Appl. Spectrosc. 74, 1155–1160 (2020).
Li, Y., Zhang, C., Tian, Z., Cai, X. & Guan, B. Identification and quantification of nanoplastics (20–1000 nm) in a drinking water treatment plant using AFM-IR and Pyr-GC/MS. J. Hazard. Mater. 463, 132933 (2024).
Browne, M. et al. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ. Sci. Technol. 42, 5026–5031 (2008).
Nguyen, B. & Tufenkji, N. Single-particle resolution fluorescence microscopy of nanoplastics. Environ. Sci. Technol. 56, 6426–6435 (2022).
Roth, G. A., Tahiliani, S., Neu‐Baker, N. M. & Brenner, S. A. Hyperspectral microscopy as an analytical tool for nanomaterials. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 7, 565–579 (2015).
Hu, F., Shi, L. & Min, W. Biological imaging of chemical bonds by stimulated Raman scattering microscopy. Nat. Methods 16, 830–842 (2019).
Wang, M. et al. Stimulated Raman scattering microscopy reveals bioaccumulation of small microplastics in protozoa from natural waters. Environ. Sci. Technol. 58, 2922–2930 (2024). This article reports an SRS-based technique for in vivo imaging and quantification of small-sized MPs in protozoa.
Naidu, S. A., Ranga Rao, V. & Ramu, K. J. E. G. Microplastics in the benthic invertebrates from the coastal waters of Kochi, Southeastern Arabian Sea. Environ. Geochem. Health. 40, 1377–1383 (2018).
Bergami, E. et al. Plastics everywhere: first evidence of polystyrene fragments inside the common Antarctic collembolan Cryptopygus antarcticus. Biol. Lett. 16, 20200093 (2020).
Wei, M. et al. Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy. Proc. Natl. Acad. Sci. USA. 116, 6608–6617 (2019).
Choi, D. S. et al. Label-free live-cell imaging of internalized microplastics and cytoplasmic organelles with multicolor CARS microscopy. Environ. Sci. Technol. 56, 3045–3055 (2022).
Galloway, T. S. et al. Ecotoxicological assessment of nanoparticle-containing acrylic copolymer dispersions in fairy shrimp and zebrafish embryos. Environ. Sci.: Nano 4, 1981–1997 (2017).
Xue, R. et al. Mechanistic understanding toward the maternal transfer of nanoplastics in Daphnia magna. ACS Nano 17, 13488–13499 (2023). This article demonstrates two pathways on the maternal transfer of NPs in D. magna by tracking and quantification of NPs in different parts of D. magna.
Feng, J. et al. In situ identification and spatial mapping of microplastic standards in paramecia by secondary-ion mass spectrometry imaging. Anal. Chem. 93, 5521–5528 (2021).
Li, Y. et al. In situ imaging of microplastics in living organisms based on mass spectrometry technology. Eco-Environ. Health. 3, 412–417 (2024).
Lin, Y., Huang, X., Liu, Q., Lin, Z. & Jiang, G. Thermal fragmentation enhanced identification and quantification of polystyrene micro/nanoplastics in complex media. Talanta 208, 120478 (2020).
Endres, K. J., Hill, J. A., Lu, K., Foster, M. D. & Wesdemiotis, C. Surface layer matrix-assisted laser desorption ionization mass spectrometry imaging: a surface imaging technique for the molecular-level analysis of synthetic material surfaces. Anal. Chem. 90, 13427–13433 (2018).
Ye, H. et al. MALDI mass spectrometry‐assisted molecular imaging of metabolites during nitrogen fixation in the Medicago truncatula–Sinorhizobium meliloti symbiosis. Plant. J. 75, 130–145 (2013).
Zavalin, A. et al. Direct imaging of single cells and tissue at sub-cellular spatial resolution using transmission geometry MALDI MS. J. Mass. Spectrom. 47, 1473–1481 (2012).
Conti, G. O. et al. Micro-and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environ. Res. 187, 109677 (2020).
Maxwell, S. H., Melinda, K. F. & Matthew, G. Counterstaining to separate Nile red-stained microplastic particles from terrestrial invertebrate biomass. Environ. Sci. Technol. 54, 5580–5588 (2020).
Feng, Z. et al. Microplastics in bloom-forming macroalgae: distribution, characteristics and impacts. J. Hazard. Mater. 397, 122752 (2020).
Bowley, J., Baker-Austin, C., Porter, A., Hartnell, R. & Lewis, C. Oceanic hitchhikers—assessing pathogen risks from marine microplastic. Trends Microbiol. 29, 107–116 (2021).
De Witte, B. et al. Short report on methods and protocols for the analysis of nano-, micro-, and macroplastic in biota. Zenodo https://doi.org/10.5281/zenodo.8417585 (2023).
Zhu, J. & Wang, C. Recent advances in the analysis methodologies for microplastics in aquatic organisms: current knowledge and research challenges. Anal. Methods. 12, 2944–2957 (2020).
Karami, A. et al. A high-performance protocol for extraction of microplastics in fish. Sci. Total. Environ. 578, 485–494 (2017).
Bianchi, J. et al. Food preference determines the best suitable digestion protocol for analysing microplastic ingestion by fish. Mar. Pollut. Bull. 154, 111050 (2020).
Yu, W. et al. Extraction of biodegradable microplastics from tissues of aquatic organisms. Sci. Total. Environ. 838, 156396 (2022).
Podbielski, I., Hamm, T. & Lenz, M. Customized digestion protocols for copepods, euphausiids, chaetognaths and fish larvae facilitate the isolation of ingested microplastics. Sci. Rep. 14, 19985 (2024).
Löder, M. G. J. et al. Enzymatic purification of microplastics in environmental samples. Environ. Sci. Technol. 51, 14283–14292 (2017).
Collard, F. et al. Plastic particle ingestion by wild freshwater fish: a critical review. Environ. Sci. Technol. 53, 12974–12988 (2019).
Li, Q. C. et al. Sequential isolation of microplastics and nanoplastics in environmental waters by membrane filtration, followed by cloud-point extraction. Anal. Chem. 93, 4559–4566 (2021).
Marfella, R. et al. Microplastics and nanoplastics in atheromas and cardiovascular events. N. Engl. J. Med. 390, 900–910 (2024). This article demonstrates the presence of MNPs in atherosclerotic plaques and describes their association with higher combined risk (heart attack, stroke or death) of cardiovascular events.
Zhou, X. X. et al. Quantitative analysis of polystyrene and poly(methyl methacrylate) nanoplastics in tissues of aquatic animals. Environ. Sci. Technol. 55, 3032–3040 (2021).
Li, P., He, C. & Lin, D. Extraction and quantification of polystyrene nanoplastics from biological samples. Environ. Pollut. 314, 120267 (2022).
Hermsen, E., Mintenig, S. M., Besseling, E. & Koelmans, A. A. Quality criteria for the analysis of microplastic in biota samples: a critical review. Environ. Sci. Technol. 52, 10230–10240 (2018).
Nihart, A. J. et al. Bioaccumulation of microplastics in decedent human brains. Nat. Med. 31, 1114–1119 (2025). This study reports the presence of MNPs in human brains and provides evidence on the higher abundance of MNPs in the brains of individuals with dementia than in those without.
Amato-Lourenço, L. F. et al. Microplastics in the olfactory bulb of the human brain. JAMA Netw. Open. 7, 2440018 (2024).
Amato-Lourenço, L. F. et al. Presence of airborne microplastics in human lung tissue. J. Hazard. Mater. 416, 126124 (2021).
Zhu, L. et al. Tissue accumulation of microplastics and potential health risks in human. Sci. Total. Environ. 915, 170004 (2024).
Jenner, L. C. et al. Detection of microplastics in human lung tissue using μFTIR spectroscopy. Sci. Total. Environ. 831, 154907 (2022).
Wang, S. et al. Microplastics in the lung tissues associated with blood test index. Toxics 11, 759 (2023).
Ao, J. et al. Fast detection and 3D imaging of nanoplastics and microplastics by stimulated Raman scattering microscopy. Cell Rep. Phys. Sci. 4, 101623 (2023).
Chen, Q. et al. An emerging role of microplastics in the etiology of lung ground glass nodules. Environ. Sci. Eur. 34, 25 (2022).
Baeza-Martínez, C. et al. First evidence of microplastics isolated in European citizens’ lower airway. J. Hazard. Mater. 438, 129439 (2022).
Chen, C. et al. Microplastics in the bronchoalveolar lavage fluid of Chinese children: associations with age, city development, and disease features. Environ. Sci. Technol. 57, 12594–12601 (2023).
Ibrahim, Y. S. et al. Detection of microplastics in human colectomy specimens. JGH Open. 5, 116–121 (2021).
Horvatits, T. et al. Microplastics detected in cirrhotic liver tissue. eBioMedicine 82, 104147 (2022).
Leslie, H. A. et al. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 163, 107199 (2022).
Yang, Y. et al. Detection of various microplastics in patients undergoing cardiac surgery. Environ. Sci. Technol. 57, 10911–10918 (2023).
Liu, S. et al. Microplastics in three types of human arteries detected by pyrolysis–gas chromatography/mass spectrometry (Py-GC/MS). J. Hazard. Mater. 469, 133855 (2024).
Rotchell, J. M. et al. Detection of microplastics in human saphenous vein tissue using μFTIR: a pilot study. PLoS One 18, 0280594 (2023).
Massardo, S. et al. MicroRaman spectroscopy detects the presence of microplastics in human urine and kidney tissue. Environ. Int. 184, 108444 (2024).
Liu, S. et al. The association between microplastics and microbiota in placentas and meconium: the first evidence in humans. Environ. Sci. Technol. 57, 17774–17785 (2022).
Zhu, L. et al. Identification of microplastics in human placenta using laser direct infrared spectroscopy. Sci. Total. Environ. 856, 159060 (2023).
Weingrill, R. B. et al. Temporal trends in microplastic accumulation in placentas from pregnancies in Hawai’i. Environ. Int. 180, 108220 (2023).
Garcia, M. A. et al. Quantitation and identification of microplastics accumulation in human placental specimens using pyrolysis gas chromatography mass spectrometry. Toxicol. Sci. 199, 81–88 (2024).
Ragusa, A. et al. Plasticenta: first evidence of microplastics in human placenta. Environ. Int. 146, 106274 (2021).
Xue, J. et al. Microplastics in maternal amniotic fluid and their associations with gestational age. Sci. Total. Environ. 920, 171044 (2024).
Zhao, Q. et al. Detection and characterization of microplastics in the human testis and semen. Sci. Total. Environ. 877, 162713 (2023).
Hu, C. J. et al. Microplastic presence in dog and human testis and its potential association with sperm count and weights of testis and epididymis. Toxicol. Sci. 200, 235–240 (2024).
Li, Z. et al. Identification and analysis of microplastics in human lower limb joints. J. Hazard. Mater. 461, 132640 (2024).
Guo, X. et al. Discovery and analysis of microplastics in human bone marrow. J. Hazard. Mater. 477, 135266 (2024).
Wallace, H. et al. Statement on the presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J. 14, e4501 (2016).
Wright, S. L. & Kelly, F. J. Plastic and human health: a micro issue? Environ. Sci. Technol. 51, 6634–6647 (2017).
Zhang, D. et al. Microplastics are detected in human gallstones and have the ability to form large cholesterol–microplastic heteroaggregates. J. Hazard. Mater. 467, 133631 (2024).
Prata, J. C. Microplastics and human health: integrating pharmacokinetics. Crit. Rev. Environ. Sci. Technol. 53, 1489–1511 (2023).
Tarafdar, A., Xie, J., Gowen, A., O’Higgins, A. C. & Xu, J. L. Advanced optical photothermal infrared spectroscopy for comprehensive characterization of microplastics from intravenous fluid delivery systems. Sci. Total. Environ. 929, 172648 (2024).
Çağlayan, U., Gündoğdu, S., Ramos, T. M. & Syberg, K. Intravenous hypertonic fluids as a source of human microplastic exposure. Environ. Toxicol. Phar. 107, 104411 (2024).
Qian, N. et al. Rapid single-particle chemical imaging of nanoplastics by SRS microscopy. Proc. Natl. Acad. Sci. USA. 121, e2300582121 (2024).
Pan, Z., Liu, Q., Xu, J., Li, W. & Lin, H. Microplastic contamination in seafood from Dongshan Bay in southeastern China and its health risk implication for human consumption. Environ. Pollut. 303, 119163 (2022).
Liao, Z. et al. Airborne microplastics in indoor and outdoor environments of a coastal city in eastern China. J. Hazard. Mater. 417, 126007 (2021).
Qin, X. et al. Features, potential invasion pathways, and reproductive health risks of microplastics detected in human uterus. Environ. Sci. Technol. 58, 10482–10493 (2024).
Li, N. et al. Prevalence and implications of microplastic contaminants in general human seminal fluid: a Raman spectroscopic study. Sci. Total. Environ. 937, 173522 (2024).
Zhang, C. et al. Association of mixed exposure to microplastics with sperm dysfunction: a multi-site study in China. eBioMedicine 108, 105369 (2024).
Deng, C. et al. Identification and analysis of microplastics in para-tumor and tumor of human prostate. eBioMedicine 108, 105360 (2024).
Canga, E. M., Gowen, A. & Xu, J. L. Assessing the inconsistency of microplastic measurements in foods and beverages. Compr. Rev. Food Sci. Food Saf. 23, e13315 (2024).
Jiang, X., Tian, L., Ma, Y. & Ji, R. Quantifying the bioaccumulation of nanoplastics and PAHs in the clamworm Perinereis aibuhitensis. Sci. Total. Environ. 655, 591–597 (2019).
Hataley, E. K., McIlwraith, H. K., Roy, D. & Rochman, C. M. Towards a management strategy for microplastic pollution in the Laurentian Great Lakes—ecological risk assessment and management (part 2). Can. J. Fish. Aquat. Sci. 80, 1669–1678 (2023).
Brander, S. M. et al. Sampling and quality assurance and quality control: a guide for scientists investigating the occurrence of microplastics across matrices. Appl. Spectrosc. 74, 1099–1125 (2020).
Ivleva, N. P., Wiesheu, A. C. & Niessner, R. Microplastic in aquatic ecosystems. Angew. Chem. Int. Ed. 56, 1720–1739 (2017).
Catarino, A. I., Frutos, A. & Henry, T. B. Use of fluorescent-labelled nanoplastics (NPs) to demonstrate NP absorption is inconclusive without adequate controls. Sci. Total. Environ. 670, 915–920 (2019).
Villacorta, A. et al. Fluorescent labeling of micro/nanoplastics for biological applications with a focus on “true-to-life” tracking. J. Hazard. Mater. 476, 135134 (2024).
Wang, M. & Wang, W. X. Accumulation kinetics and gut microenvironment responses to environmentally relevant doses of micro/nanoplastics by zooplankton Daphnia magna. Environ. Sci. Technol. 57, 5611–5620 (2023). This article reports the bioaccumulation of differentially charged MNPs in zooplankton using AIE-labelled MNPs.
Dong, Z. & Wang, W. X. Tracking nano-and microplastics accumulation and egestion in a marine copepod by novel fluorescent AIEgens: kinetic modeling of the rhythm behavior. Environ. Sci. Technol. 57, 20761–20772 (2023).
Liang, J. L. et al. Low-toxic, fluorescent labeled and size-controlled graphene oxide quantum dots@polystyrene nanospheres as reference material for quantitative determination and in vivo tracing. Chemosphere 307, 136094 (2022).
Wang, Y. K. et al. Long-range order enabled stability in quantum dot light-emitting diodes. Nature 629, 586–591 (2024).
Aramendia, J. et al. Evidence of internalized microplastics in mussel tissues detected by volumetric Raman imaging. Sci. Total. Environ. 914, 169960 (2024).
Schermelleh, L. et al. Super-resolution microscopy demystified. Nat. Cell Biol. 21, 72–84 (2019).
Morgana, S., Casentini, B., Tirelli, V., Grasso, F. & Amalfitano, S. Fluorescence-based detection: a review of current and emerging techniques to unveil micro/nanoplastics in environmental samples. TrAC. Trends Anal. Chem. 172, 117559 (2024).
Clark, N. J., Khan, F. R., Mitrano, D. M., Boyle, D. & Thompson, R. C. Demonstrating the translocation of nanoplastics across the fish intestine using palladium-doped polystyrene in a salmon gut-sac. Environ. Int. 159, 106994 (2022).
Han, P. et al. Unveiling unique microbial nitrogen cycling and nitrification driver in coastal Antarctica. Nat. Commun. 15, 3143 (2024).
Mitrano, D. M. et al. Synthesis of metal-doped nanoplastics and their utility to investigate fate and behaviour in complex environmental systems. Nat. Nanotechnol. 14, 362–368 (2019). This article reports a method to synthesize palladium-doped NPs and achieves accurate quantification of NPs in complex environmental systems.
Heinlaan, M. et al. Multi-generation exposure to polystyrene nanoplastics showed no major adverse effects in Daphnia magna. Environ. Pollut. 323, 121213 (2023).
Del Real, A. E. P. et al. Assessing implications of nanoplastics exposure to plants with advanced nanometrology techniques. J. Hazard. Mater. 430, 128356 (2022).
Fu, S. F. et al. Core–shell Au@ nanoplastics as a quantitative tracer to investigate the bioaccumulation of nanoplastics in freshwater ecosystems. Anal. Chem. 95, 12785–12793 (2023).
Monikh, F. A. et al. Quantifying the trophic transfer of sub-micron plastics in an assembled food chain. Nano Today 46, 101611 (2022).
Cassano, D. et al. Inorganic species-doped polypropylene nanoparticles for multifunctional detection. ACS Appl. Nano Mater. 4, 1551–1557 (2021).
Li, X. et al. Preparation of NaYF4:Yb,Er nanoparticles coated with hydrophilic polystyrene. Mater. Lett. 247, 159–162 (2019).
Smith, C. et al. Nanoplastics prepared with uniformly distributed metal-tags: a novel approach to quantify size distribution and particle number concentration of polydisperse nanoplastics by single particle ICP-MS. Environ. Sci.: Nano 11, 911–923 (2024).
Das, A., Terry, L. R., Sanders, S., Yang, L. & Guo, H. Confocal surface-enhanced Raman imaging of the intestinal barrier crossing behavior of model nanoplastics in Daphnia magna. Environ. Sci. Technol. 58, 11615–11624 (2024).
Luo, Y. et al. Quantitative tracing of uptake and transport of submicrometre plastics in crop plants using lanthanide chelates as a dual-functional tracer. Nat. Nanotechnol. 17, 424–431 (2022).
Wang, Y. et al. Tracking and imaging nano-plastics in fresh plant using cryogenic laser ablation inductively coupled plasma mass spectrometry. J. Hazard. Mater. 465, 133029 (2024).
Yeo, I. C. et al. Insights into tissue-specific bioaccumulation of nanoplastics in marine medaka as revealed by a stable carbon isotopic approach. Environ. Sci. Technol. Lett. 10, 838–843 (2023).
Taipale, S. J. et al. Tracing the fate of microplastic carbon in the aquatic food web by compound-specific isotope analysis. Sci. Rep. 9, 19894 (2019).
Jiang, X. et al. Foliar exposure of deuterium stable isotope-labeled nanoplastics to lettuce: quantitative determination of foliar uptake, transport, and trophic transfer in a terrestrial food chain. Environ. Sci. Technol. 58, 15438–15449 (2024).
Al-Sid-Cheikh, M. et al. Uptake, whole-body distribution, and depuration of nanoplastics by the scallop Pecten maximus at environmentally realistic concentrations. Environ. Sci. Technol. 52, 14480–14486 (2018). This article reports the synthesis of 14C-labelled polystyrene nanoplastics and obtains their distribution in Pecten maximus via QWBA.
Munir, M. et al. Iodine-131 radiolabeled polyvinylchloride: a potential radiotracer for micro and nanoplastics bioaccumulation and biodistribution study in organisms. Mar. Pollut. Bull. 188, 114627 (2023).
Im, C. et al. PET tracing of biodistribution for orally administered 64Cu-labeled polystyrene in mice. J. Nucl. Med. 63, 461–467 (2022).
Delaney, S. et al. Unraveling the in vivo fate of inhaled MNPs with PET imaging. Sci. Total. Environ. 904, 166320 (2023).
Shi, X. et al. Capturing, enriching and detecting nanoplastics in water based on optical manipulation, surface-enhanced Raman scattering and microfluidics. Nat. Water 3, 449–460 (2025).
Al-Sid-Cheikh, M. et al. Synthesis of 14C-labelled polystyrene nanoplastics for environmental studies. Commun. Mater. 1, 97 (2020).
Lorenzo-Navarro, J. et al. Deep learning approach for automatic microplastics counting and classification. Sci. Total. Environ. 765, 142728 (2021).
Lee, G. & Jhang, K. Neural network analysis for microplastic segmentation. Sensors 21, 7030 (2021).
Zhu, Z., Parker, W. & Wong, A. Leveraging deep learning for automatic recognition of microplastics (MPs) via focal plane array (FPA) micro-FT-IR imaging. Environ. Pollut. 337, 122548 (2023).
Chen, Q. et al. Rapid mass conversion for environmental microplastics of diverse shapes. Environ. Sci. Technol. 58, 10776–10785 (2024). This article reports the development of an accurate MP mass conversion model based on a deep neural residual network.
Primpke, S. et al. Toward the systematic identification of microplastics in the environment: evaluation of a new independent software tool (siMPle) for spectroscopic analysis. Appl. Spectrosc. 74, 1127–1138 (2020).
Zhu, Z., Parker, W. & Wong, A. PlasticNet: deep learning for automatic microplastic recognition via FT-IR spectroscopy. J. Comput. Vis. Imaging Syst. 6, 1–3 (2021).
Bianco, V. et al. Microplastic identification via holographic imaging and machine learning. Adv. Intell. Syst. 2, 1900153 (2020).
Zhu, Y., Yeung, C. H. & Lam, E. Y. Digital holographic imaging and classification of microplastics using deep transfer learning. Appl. Opt. 60, A38–A47 (2021).
Wang, X. et al. Differentiating microplastics from natural particles in aqueous suspensions using flow cytometry with machine learning. Environ. Sci. Technol. 58, 10240–10251 (2024).
Li, Y. et al. Tracing microplastic aging processes using multimodal deep learning: a predictive model for enhanced traceability. Environ. Sci. Technol. 58, 18335–18344 (2024).
Shishkin, I. E. & Grekov, A. N. Implementation of YOLOv5 for detection and classification of microplastics and microorganisms in marine environment. In International Russian Smart Industry Conference 229–235 (Curan Associates, 2023).
Zhang, Y. et al. Hyperspectral imaging based method for rapid detection of microplastics in the intestinal tracts of fish. Environ. Sci. Technol. 53, 5151–5158 (2019).
Ishmukhametov, I., Nigamatzyanova, L., Fakhrullina, G. & Fakhrullin, R. Label-free identification of microplastics in human cells: dark-field microscopy and deep learning study. Anal. Bioanal. Chem. 414, 1297–1312 (2022).
Lee, S. et al. Automatic classification of microplastics and natural organic matter mixtures using a deep learning model. Water Res. 246, 120710 (2023).
Suaria, G. et al. Microfibers in oceanic surface waters: a global characterization. Sci. Adv. 6, 8493 (2020).
Liu, Y. et al. Suspected sources of microplastics and nanoplastics: contamination from experimental reagents and solvents. Water Res. 249, 120925 (2024).
Bai, R. et al. Microplastics are overestimated due to poor quality control of reagents. J. Hazard. Mater. 459, 132068 (2023).
Yang, T., Xu, Y., Liu, G. & Nowack, B. Oligomers are a major fraction of the submicrometre particles released during washing of polyester textiles. Nat. Water 2, 151–160 (2024).
Conchione, C., Lucci, P. & Moret, S. Migration of polypropylene oligomers into ready-to-eat vegetable soups. Foods 9, 1365 (2020).
Tamayo-Belda, M. et al. Identification and toxicity towards aquatic primary producers of the smallest fractions released from hydrolytic degradation of polycaprolactone microplastics. Chemosphere 303, 134966 (2022).
Arctic Monitoring and Assessment Programme. Microplastics and litter in the environment; https://litterandmicroplastics.amap.no (2021).
Coffin, S. The emergence of microplastics: charting the path from research to regulations. Environ. Sci.: Adv. 2, 356–367 (2023).
International Organization for Standardization. Principles for the analysis of microplastics present in the environment; https://www.iso.org/obp/ui/en/#iso:std:iso:24187:ed-1:v1:en (2023).