Wang, Z., Zhang, B. & Guan, D. Take responsibility for electronic-waste disposal. Nature 536, 23–25 (2016).

CAS 

Google Scholar
 

Awasthi, A. K., Li, J., Koh, L. & Ogunseitan, O. A. Circular economy and electronic waste. Nat. Electron. 2, 86–89 (2019).


Google Scholar
 

Weidenkaff, A., Wagner-Wenz, R. & Veziridis, A. A world without electronic waste. Nat. Rev. Mater. 6, 462–463 (2021).


Google Scholar
 

Zabala, A. Illegal electronic waste recycling trends. Nat. Sustain. 2, 353–354 (2019).


Google Scholar
 

Science to Enable Sustainable Plastics—A White Paper from the 8th Chemical Sciences and Society Summit (CS3) (Royal Society of Chemistry, 2020).

Chen, Y. et al. Selective recovery of precious metals through photocatalysis. Nat. Sustain. 4, 618–626 (2021).


Google Scholar
 

Li, W. et al. Biodegradable materials and green processing for green electronics. Adv. Mater. 32, e2001591 (2020).


Google Scholar
 

Hwang, S.-W. et al. A physically transient form of silicon electronics. Science 337, 1640–1644 (2012).

CAS 

Google Scholar
 

Han, W. B., Lee, J. H., Shin, J. W. & Hwang, S. W. Advanced materials and systems for biodegradable, transient electronics. Adv. Mater. 32, e2002211 (2020).


Google Scholar
 

Teng, L. et al. Liquid metal-based transient circuits for flexible and recyclable electronics. Adv. Funct. Mater. 29, 1808739 (2019).


Google Scholar
 

Williams, N. X., Bullard, G., Brooke, N., Therien, M. J. & Franklin, A. D. Printable and recyclable carbon electronics using crystalline nanocellulose dielectrics. Nat. Electron. 4, 261–268 (2021).

CAS 

Google Scholar
 

Shi, C. et al. Heterogeneous integration of rigid, soft, and liquid materials for self-healable, recyclable, and reconfigurable wearable electronics. Sci. Adv. 6, eabd0202 (2020).

CAS 

Google Scholar
 

Zhang, S. et al. Biomimetic spinning of soft functional fibres via spontaneous phase separation. Nat. Electron. 6, 338–348 (2023).


Google Scholar
 

Irimia-Vladu, M. “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chem. Soc. Rev. 43, 588–610 (2014).

CAS 

Google Scholar
 

Kwon, J. et al. Conductive ink with circular life cycle for printed electronics. Adv. Mater. 34, e2202177 (2022).


Google Scholar
 

Christensen, P. R., Scheuermann, A. M., Loeffler, K. E. & Helms, B. A. Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds. Nat. Chem. 11, 442–448 (2019).

CAS 

Google Scholar
 

Haussler, M., Eck, M., Rothauer, D. & Mecking, S. Closed-loop recycling of polyethylene-like materials. Nature 590, 423–427 (2021).


Google Scholar
 

Zhang, Z. et al. Strong and tough supramolecular covalent adaptable networks with room-temperature closed-loop recyclability. Adv. Mater. 35, 2208619 (2023).

CAS 

Google Scholar
 

Liu, Y. et al. Closed-loop chemical recycling of thermosetting polymers and their applications: a review. Green Chem. 24, 5691–5708 (2022).

CAS 

Google Scholar
 

Sullivan, K. P. et al. Mixed plastics waste valorization through tandem chemical oxidation and biological funneling. Science 378, 207–211 (2022).

CAS 

Google Scholar
 

DelRe, C. et al. Near-complete depolymerization of polyesters with nano-dispersed enzymes. Nature 592, 558–563 (2021).

CAS 

Google Scholar
 

Hatti-Kaul, R., Nilsson, L. J., Zhang, B., Rehnberg, N. & Lundmark, S. Designing biobased recyclable polymers for plastics. Trends Biotechnol. 38, 50–67 (2020).

CAS 

Google Scholar
 

Hadley Kershaw, E., Hartley, S., McLeod, C. & Polson, P. The sustainable path to a circular bioeconomy. Trends Biotechnol. 39, 542–545 (2021).

CAS 

Google Scholar
 

Kakadellis, S. & Rosetto, G. Achieving a circular bioeconomy for plastics. Science 373, 49–50 (2021).

CAS 

Google Scholar
 

Vollmer, I. et al. Beyond mechanical recycling: giving new life to plastic waste. Angew. Chem. Int. Ed. 59, 15402–15423 (2020).

CAS 

Google Scholar
 

Coates, G. W. & Getzler, Y. D. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5, 501–516 (2020).

CAS 

Google Scholar
 

Wang, C., Yokota, T. & Someya, T. Natural biopolymer-based biocompatible conductors for stretchable bioelectronics. Chem. Rev. 121, 2109–2146 (2021).

CAS 

Google Scholar
 

Li, T. et al. Developing fibrillated cellulose as a sustainable technological material. Nature 590, 47–56 (2021).

CAS 

Google Scholar
 

Iguchi, M., Yamanaka, S. & Budhiono, A. Bacterial cellulose—a masterpiece of nature’s arts. J. Mater. Sci. 35, 261–270 (2000).

CAS 

Google Scholar
 

Guan, Q. F., Han, Z. M., Ling, Z. C., Yang, H. B. & Yu, S. H. Growing bacterial cellulose-based sustainable functional bulk nanocomposites by biosynthesis: recent advances and perspectives. Acc. Mater. Res. 3, 608–619 (2022).

CAS 

Google Scholar
 

Guan, Q. F. et al. A general aerosol-assisted biosynthesis of functional bulk nanocomposites. Natl Sci. Rev. 6, 64–73 (2019).

CAS 

Google Scholar
 

Guan, Q. F., Ling, Z. C., Han, Z. M., Yang, H. B. & Yu, S. H. Ultra-strong, ultra-tough, transparent, and sustainable nanocomposite films for plastic substitute. Matter 3, 1308–1317 (2020).


Google Scholar
 

Guan, Q. F., Han, Z. M., Ling, Z. C., Yang, H. B. & Yu, S. H. Sustainable wood-based hierarchical solar steam generator: a biomimetic design with reduced vaporization enthalpy of water. Nano Lett. 20, 5699–5704 (2020).

CAS 

Google Scholar
 

Yin, C. H. et al. Multiscale cellulose-based fireproof and thermal insulation gel materials with water-regulated forms. Nano Res. 16, 3379–3386 (2023).

CAS 

Google Scholar
 

Mattos, B. D. et al. Nanofibrillar networks enable universal assembly of superstructured particle constructs. Sci. Adv. 6, eaaz7328 (2020).

CAS 

Google Scholar
 

Zhang, Y., Liu, Z., Zhang, X. & Guo, S. Sandwich-layered dielectric film with intrinsically excellent adhesion, low dielectric constant, and ultralow dielectric loss for a high-frequency flexible printed circuit. Ind. Eng. Chem. Res. 60, 11749–11759 (2021).

CAS 

Google Scholar
 

Tournier, V. et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580, 216–219 (2020).

CAS 

Google Scholar
 

Nogueira, G., Capaz, R., Franco, T., Dias, M. & Cavaliero, C. Enzymes as an environmental bottleneck in cellulosic ethanol production: does on-site production solve it? J. Clean. Prod. 369, 133314 (2022).

CAS 

Google Scholar
 

Shi, X. et al. Scalable production of carboxylated cellulose nanofibres using a green and recyclable solvent. Nat. Sustain. 7, 315–325 (2024).


Google Scholar
 

Lu, Y., Mehling, M., Huan, S., Bai, L. & Rojas, O. J. Biofabrication with microbial cellulose: from bioadaptive designs to living materials. Chem. Soc. Rev. 53, 7363–7391 (2024).

CAS 

Google Scholar
 

Lee, D., Yu, A. H. & Saddler, J. N. Evaluation of cellulase recycling strategies for the hydrolysis of lignocellulosic substrates. Biotechnol. Bioeng. 45, 328–336 (1995).

CAS 

Google Scholar
 

Singhania, R. R. et al. Challenges in cellulase bioprocess for biofuel applications. Renew. Sust. Energ. Rev. 151, 111622 (2021).

CAS 

Google Scholar