Convention on Biological Diversity (CBD). Kunming-Montreal Global Biodiversity Framework (CBD/COP/15/L.25). 2022. https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-04-en.pdf

Zak D, McInnes RJ. A call for refining the peatland restoration strategy in Europe. J Appl Ecol. 2022;59(11):2698–704.

Article 

Google Scholar
 

Swindles GT, Morris PJ, Mullan DJ, Payne RJ, Roland TP, Amesbury MJ, et al. Widespread drying of European peatlands in recent centuries. Nat Geosci. 2019;12(11):922–8.

Article 
CAS 

Google Scholar
 

Sánchez-Moreno S, Ferris H, Guil N. Role of tardigrades in the suppressive service of a soil food web. Agric Ecosyst Environ. 2008;124(3–4):187–92.

Article 

Google Scholar
 

Nelson DR, Bartels PJ, Guil N. Tardigrade ecology. In: Schill RO, editor. Water bears: the biology of tardigrades. 2nd ed. Cham: Springer; 2018. pp. 163–210.

Chapter 

Google Scholar
 

Mäenpää H, Elo M, Calhim S. A first look into moss living tardigrades in boreal peatlands. Ecol Evol. 2024;14(8):1–11.

Article 

Google Scholar
 

Rydin H, Jeglum JK, Bennett KD. The biology of peatlands. 2nd ed. New York: Oxford Univeristy; 2013.

Book 

Google Scholar
 

Hannigan E, Kelly-Quinn M. Composition and structure of macroinvertebrate communities in contrasting open-water habitats in Irish peatlands: implications for biodiversity conservation. Hydrobiologia. 2012;692(1):19–28.

Article 
CAS 

Google Scholar
 

Hyvärinen E, Juslén A, Kemppainen E, Uddström A, Liukko UM, editors. Suomen Lajien uhanalaisuus – Punainen Kirja 2019. The 2019 red list of Finnish species. Helsinki: Ympäristöministeriö & Suomen ympäristökeskus; 2019. p. 704.


Google Scholar
 

Haapalehto TO, Vasander H, Jauhiainen S, Tahvanainen T, Kotiaho JS. The effects of peatland restoration on water-table depth, elemental concentrations, and vegetation: 10 years of changes. Restor Ecol. 2011;19(5):587–98.

Article 

Google Scholar
 

Haapalehto T, Kotiaho JS, Matilainen R, Tahvanainen T. The effects of long-term drainage and subsequent restoration on water table level and pore water chemistry in boreal peatlands. J Hydrol. 2014;519(1):1493–505.

Article 
CAS 

Google Scholar
 

Kareksela S, Ojanen P, Aapala K, Haapalehto T, Ilmonen J, Koskinen M,Laiho R, Laine A, Maanavilja L, Marttila H, Minkkinen K, Nieminen M, Ronkanen A-K, Sallantaus T, Sarkkola S, Tolvanen A, Tuittila E-S, Vasander H. . Soiden ennallistamisen suoluonto-, vesistö-, ja ilmastovaikutukset. Peer reviewed report. Finnish Nature Panel . 2021.

Maanavilja L, Aapala K, Haapalehto T, Kotiaho JS, Tuittila ES. Impact of drainage and hydrological restoration on vegetation structure in boreal spruce swamp forests. For Ecol Manage. 2014;330:115–25.

Article 

Google Scholar
 

Elo M, Kareksela S, Ovaskainen O, Abrego N, Niku J, Taskinen S, et al. Restoration of forestry-drained boreal peatland ecosystems can effectively stop and reverse ecosystem degradation. Commun Earth Environ. 2024;5(1):1–11.

Article 

Google Scholar
 

Haapalehto T, Juutinen R, Kareksela S, Kuitunen M, Tahvanainen T, Vuori H, et al. Recovery of plant communities after ecological restoration of forestry-drained peatlands. Ecol Evol. 2017;7(19):7848–58.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Elo M, Penttinen J, Kotiaho JS. The effect of peatland drainage and restoration on odonata species richness and abundance. BMC Ecol. 2015;15(1):1–8.

Article 

Google Scholar
 

Punttila P, Autio O, Kotiaho JS, Kotze DJ, Loukola OJ, Noreika N, et al. The effects of drainage and restoration of pine mires on habitat structure, vegetation and ants. Silva Fenn. 2016;50(2):1–31.

Article 

Google Scholar
 

Atkinson J, Brudvig LA, Mallen-Cooper M, Nakagawa S, Moles AT, Bonser SP. Terrestrial ecosystem restoration increases biodiversity and reduces its variability, but not to reference levels: a global meta-analysis. Ecol Lett. 2022;25(7):1725–37.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Guidetti R, Altiero T, Rebecchi L. On dormancy strategies in tardigrades. J Insect Physiol. 2011;57(5):567–76.

Article 
CAS 
PubMed 

Google Scholar
 

Møbjerg N, Halberg KA, Jørgensen A, Persson D, Bjørn M, Ramløv H, et al. Survival in extreme environments – on the current knowledge of adaptations in tardigrades. Acta Physiol. 2011;202(3):409–20.

Article 

Google Scholar
 

Møbjerg N, Jørgensen A, Møbjerg Kristensen R, Neves RC. Morphology and functional anatomy. In: Schill RO, editor. Water bears: the biology of tardigrades. 2nd ed. Cham: Springer; 2018. pp. 57–94.

Chapter 

Google Scholar
 

Guidetti R, Jönsson KI, Kaczmarek Ł, Meier T, Speed JDM, Prestø T, et al. Tardigrade diversity and community composition across Norwegian boreal forests. Zool J Linn Soc. 2024;200(1):156–71.

Article 

Google Scholar
 

Schuster R, Greven H. A long-term study of population dynamics of tardigrades in the moss Rhytidiadelphus squarrosus (Hedw.) Warnst. J Limnol. 2007;66(1):141–51.

Article 

Google Scholar
 

Degma P, Katina S, Sabatovičová L. Horizontal distribution of moisture and tardigrada in a single moss cushion. J Zool Syst Evol Res. 2011;49(s1):71–7.

Article 

Google Scholar
 

Giovannini I, Manfrin C, Greco S, Vincenzi J, Altiero T, Guidetti R, et al. Increasing temperature-driven changes in life history traits and gene expression of an Antarctic tardigrade species. Front Physiol. 2023;14:1–12.

Article 

Google Scholar
 

Kaczmarek Ł, Gołdyn B, Wełnicz W, Michalczyk Ł. Ecological factors determining tardigrada distribution in Costa Rica. J Zool Syst Evol Res. 2011;49(s1):78–83.

Article 

Google Scholar
 

Kathman RD, Cross SF. Ecological distribution of moss-dwelling tardigrades on Vancouver Island, British Columbia, Canada. Can J Zool. 1991;69(1):122–9.

Article 

Google Scholar
 

Guil N, Hortal J, Sánchez-Moreno S, MacHordom A. Effects of macro and micro-environmental factors on the species richness of terrestrial tardigrade assemblages in an Iberian mountain environment. Landsc Ecol. 2009;24(3):375–90.

Article 

Google Scholar
 

Jönsson KI. Population density and species composition of moss-living tardigrades in a boreo-nemoral forest. Ecography. 2003;26:356–64.

Article 

Google Scholar
 

Glime JM, editor . Adaptive strategies: growth and life forms. In: Bryophyte ecology volume 1 physiological ecology. Houghton: Michigan Technological University and the International Association of Bryologists; 2007. p. 1–26.

Stoy P, Street L, Johnson A, Prieto-Blanco A, Ewing S. Temperature, heat flux, and reflectance of common subarctic mosses and lichens under field conditions: might changes to community composition impact climate-relevant surface fluxes? Arct Antarct Alp Res. 2012;44(4):500–8.

Article 

Google Scholar
 

Barrett GW, Kimmel RG. Effects of DDT on the density and diversity of tardigrades. Proc Iowa Acad Sci. 1972;78(3–4):41–2.


Google Scholar
 

Meininger CA, Spatt PD. Variations of tardigrade assemblages in dust-impacted Arctic mosses. Arct Alp Res. 1988;20(1):24–30.

Article 

Google Scholar
 

Vargha B, Ötvös E, Tuba Z. Investigations on ecological effects of heavy metal pollution in Hungary by moss-dwelling water bears (Tardigrada), as bioindicators. Ann Agric Environ Med. 2002;9(2):141–6.

CAS 
PubMed 

Google Scholar
 

Rocha AM, González-Reyes A, Corronca J, Rodríguez-Artigas S, Doma I, Repp EY, et al. Tardigrade diversity: an evaluation of natural and disturbed environments of the Province of Salta (Argentina). Zool J Linn Soc. 2016;178(4):755–64.

Article 

Google Scholar
 

Mäenpää H, Elo M, Vuori T, Calhim S. The effects of sample storage duration on tardigrade density and community composition in moss samples. Pedobiologia. 2023;99–100:150895.

Article 

Google Scholar
 

Stec D, Vecchi M, Budzik K, Matsko Y, Miler K. Distribution of tardigrade cryptobiotic abilities across a fine-scale habitat gradient. Organisms Divers Evol. 2024;35:43–54.


Google Scholar
 

Kontula T, Raunio A, editors. Threatened habitat types in Finland 2018. Red list of habitats –Results and basis for assessment. Helsinki: Finnish Environment Institute and Ministry of the Environment; 2019.


Google Scholar
 

Kaakinen E, Kokko A, Aapala K, Autio O, Eurola S, Hotanen JP, et al. 5 Suot. In: Kontula T, Raunio A, editors. Suomen luontotyyppien Uhanalaisuus 2018luontotyyppien Punainen kirja – Osa 2: luontotyppien Kuvaukset. Helsinki: Suomen ympäristökeskus ja ympäristöministeriö; 2018. pp. 321–474.

Loeffelholz J, Meese E, Giovannini I, Ullibarri K, Momeni S, Merfeld N, et al. An evaluation of thermal tolerance in six tardigrade species in an active and dry state. Biology Open. 2024;15(10):bio060485.

Article 

Google Scholar
 

Laine J, Flatberg KI, Harju P, Timonen T, Minkkinen KJ, Laine A. Sphagnum mosses: the stars of European mires. Helsinki: Sphagna Ky; 2018.


Google Scholar
 

Vecchi M, Ferrari C, Stec D, Calhim S. Desiccation risk favours prevalence and diversity of tardigrade communities and influences their trophic structure in alpine ephemeral rock pools. Hydrobiologia. 2022;849(9):1995–2007.

Article 

Google Scholar
 

Bartels PJ, Nelson DR. A large-scale, multihabitat inventory of the phylum tardigrada in the great smoky mountains National Park, USA: A preliminary report. Hydrobiologia. 2006;558(1):111–8.

Article 

Google Scholar
 

Ovaskainen O, Abrego N. Joint species distribution modelling: with applications in R. Ecology, biodiversity and conservation. Cambridge: Cambridge University Press; 2020.

Book 

Google Scholar
 

Ovaskainen O, Tikhonov G, Norberg A, Guillaume Blanchet F, Duan L, Dunson D, et al. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol Lett. 2017;20(5):561–76.

Article 
PubMed 

Google Scholar
 

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria; 2024.

Tikhonov G, Ovaskainen O, Oksanen J, de Jonge M, Oystein O, Dallas T, Hmsc. Hierarchical Model of Species Communities. 2022.

Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-; 2016.

Book 

Google Scholar
 

Wickham H, François R, Henry L, Müller K. V aughan D. dplyr: A Grammar of Data Manipulation. R package version 1.1.4. 2023.

Oksanen J et al. Vegan: Community Ecology Package. 2025.

Pedersen T. Patchwork: The composer of Plots.R package version 1.3.2.9000. 2025.

Nelson DR, Guidetti R, Rebecchi L. Phylum tardigrada. In: Thorp J, Rogers DC, editors. Ecology and general biology: Thorp and Covich’s Freshwater Invertebrates. Vol 1, 4th ed. Amsterdam: Academic Press (Elsevier); 2015. pp. 347–80.

Jocqué M, Graham T, Brendonck L. Local structuring factors of invertebrate communities in ephemeral freshwater rock pools and the influence of more permanent water bodies in the region. Hydrobiologia. 2007;592(1):271–80.

Article 

Google Scholar
 

Jönsson KI, Rebecchi L. Experimentally induced anhydrobiosis in the tardigrade Richtersius coronifer: phenotypic factors affecting survival. J Exp Zool. 2002;293(6):578–84.

Article 
PubMed 

Google Scholar
 

Czernekova M, Jönsson KI. Experimentally induced repeated anhydrobiosis in the eutardigrade Richtersius coronifer. PLoS ONE. 2016;11(11):1–13.

Article 

Google Scholar
 

Nagwani AK, Melosik I, Kaczmarek Ł, Kmita H. Recovery from anhydrobiosis in the tardigrade Paramacrobiotus experimentalis: Better to be young than old and in a group than alone. Heliyon. 2024;10(5):e26807.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zawierucha K, Vecchi M, Takeuchi N, Ono M, Calhim S. Negative impact of freeze–thaw cycles on the survival of tardigrades. Ecol Ind. 2023;154:1–7.

Article 

Google Scholar
 

Silvan N, Laiho R, Vasander H. For Ecol Manag. 2000;133:127–33. Changes in mesofauna abundance in peat soils drained for forestry.

Article 

Google Scholar
 

Bobuľská L, Demková L, Čerevková A, Renčo M. Impact of peatland restoration on soil microbial activity and nematode communities. Wetlands Restor. 2020;40:865–75.

Article 

Google Scholar
 

Laiho R, Silvan N, Cárcamo H, Vasander H. Effects of water level and nutrients on Spatial distribution of soil mesofauna in peatlands drained for forestry in Finland. Appl Soil Ecol. 2001;16(1):1–9.

Article 

Google Scholar
 

Kamath D, Barreto C, Lindo Z. Nematode contributions to the soil food web trophic structure of two contrasting boreal peatlands in Canada. Pedobiologia. 2022;93–4:150809.

Wang YM, Guan PT, Chen JW, Li ZX, Yang YR, Wang P. A comparison of soil nematode community structure and environmental factors along fen-bush-forest succession in a peatland, Northeastern China. Global Ecol Conserv. 2021;28:e01679.

Article 

Google Scholar
 

Wei X, Cao R, Wu X, Eisenhauer N, Sun S. Effect of water table decline on the abundances of soil mites, springtails, and nematodes in the Zoige peatland of Eastern Tibetan plateau. Appl Soil Ecol. 2018;129:77–83.

Article 

Google Scholar
 

Beaulne J, Magnan G, Garneau M. Evaluating the potential of testate amoebae as indicators of hydrological conditions in boreal forested peatlands. Ecol Indic. 2018;91:386–94.

Article 
CAS 

Google Scholar
 

Minkkinen K, Laine J. Effect of forest drainage on the peat bulk density of pine mires in Finland. Can J for Res. 1998;28(2):178–86.

Article 

Google Scholar
 

Pouliot R, Rochefort L, Karofeld E. Initiation of microtopography in revegetated cutover peatlands. Appl Veg Sci. 2011;2:158–71.

Article 

Google Scholar
 

Leonard R, Moore P, Krause S, Devito KJ, Petrone GR, Mendoza C, et al. The influence of system heterogeneity on peat-surface temperature dynamics. Environ Res Lett. 2021;16(2):1–11.

Article 

Google Scholar
 

Kettridge N, Baird AJ. Simulating the thermal behavior of Northern peatlands with a 3-D microtopography. J Geophys Res Biogeosciences. 2010;115(3):1–14.


Google Scholar
 

Neves RC, Møbjerg A, Kodama M, Ramos-Madrigal J, Gilbert MTP, Møbjerg N. Differential expression profiling of heat stressed tardigrades reveals major shift in the transcriptome. Comp Biochem Physiol A: Mol Integr Physiol. 2022;267:1–7.

Article 

Google Scholar
 

Vuori T, Calhim S, Vecchi M. A lift in snail’s gut provides an efficient colonization route for tardigrades. Ecology. 2022;103(7):1–4.

Article 

Google Scholar
 

Altiero T, Atsushi CS, Rebecchi L, Reproduction. Development and life cycles. In: Schill RO, editor. Water bears: the biology of tardigrades. Cham, Switzerland: Springer; 2018. pp. 211–47.

Chapter 

Google Scholar
 

Noreika N, Kotze DJ, Loukola OJ, Sormunen N, Vuori A, Päivinen J, et al. Specialist butterflies benefit most from the ecological restoration of mires. Biol Conserv. 2016;196:103–14.

Article 

Google Scholar
 

Li X, Wang L. Effect of temperature and thermal acclimation on locomotor performance of Macrobiotus harmsworthi Murray (Tardigrada, Macrobiotidae). J Therm Biol. 2005;30(8):588–94.

Article 

Google Scholar
 

Jönsson K. I. Long-term experimental manipulation of moisture conditions and its impact on moss-living tardigrades. J Limnol. 2007;66:119–25.

Article 

Google Scholar
 

Roszkowska M, Gołdyn B, Wojciechowska D, Kosicki JZ, Fiałkowska E, Kmita H. Kaczmarek, Ł. Tolerance to anhydrobiotic conditions among two coexisting tardigrade species differing in life strategies. Zoological Stud. 2021;60 :e74.

Wright JC. The significance of four xeric parameters in the ecology of terrestrial tardigrada. J Zool. 1991;224: 59-77.

Bryndová M, Stec D, Schill RO, Michalczyk Ł, Devetter M. Dietary preferences and diet effects on life-history traits of tardigrades. Zool J Linn Soc. 2020;188(3):865–77.

Article 

Google Scholar
 

Bertolani R. Thulinius, new generic name substituting for Thulinia Bertolani, 1981 (Tardigrada, Eutardigrada). Zootaxa. 2003;324:1–4.


Google Scholar
 

Bertolani R, Bartels PJ, Guidetti R, Cesari M, Nelson DR. Aquatic tardigrades in the great smoky mountains National Park, North Carolina and Tennessee, U.S.A, with the description of a new species of Thulinius (Tardigrada, Isohypsibiidae). Zootaxa. 2014;3764:524–36.

Article 
PubMed 

Google Scholar
 

Guidetti R, Giovannini I, Del PV, Ekrem T, Nelson DR, Rebecchi L, Cesari M. Phylogeny of the asexual lineage Murrayidae (Macrobiotidae, Eutardigrada) with the description of paramurrayon gen. nov. And paramurrayon Meieri sp. nov. Invertebrate Syst. 2022;35:1099–117.

Article 

Google Scholar
 

Eurola S, Huttunen A, Kaakinen E, Kukko-oja K, Saari V, Salonen V. Sata suotyyppiä: Opas Suomen Suokasvillisuuden Tuntemiseen. Oulu: University of Oulu, Thule institute; 2015.


Google Scholar
 

Holden J, Wallage ZE, Lane SN, McDonald AT. Water table dynamics in undisturbed, drained and restored blanket peat. J Hydrol. 2011;402(1–2):103–14.

Article 

Google Scholar
 

Loeffelholz JD, Raynor S, Sánchez-Moreno S, Momeni S, Manzitto-Tripp E. Tardigrada and nematoda associations with lichen and bryophyte habitats from Southwest Wisconsin state parks, universities, and private land. Biogeographia. 2025;40(1):1–18.


Google Scholar
 

Komulainen VM, Tuittila ES, Vasander H, Laine J. Restoration of drained peatlands in Southern finland: initial effects on vegetation change and CO2 balance. J Appl Ecol. 1999;36(5):634–48.

Article 

Google Scholar
 

Laine J, Vasander H, Laiho R. Long-Term effects of water level drawdown on the vegetation of drained pine mires in Southern Finland. J Appl Ecol. 1995;32(4):785–802.

Article 

Google Scholar
 

Vecchi M, Stec D, Rebecchi L, Michalczyk L, Calhim S. Ecology explains anhydrobiotic performance across tardigrades, but the shared evolutionary history matters more. J Anim Ecol. 2023;93(3):307–18.

Article 
PubMed 

Google Scholar
 

Topstad L, Guidetti R, Majaneva M, Ekrem T. Multi-marker Dna metabarcoding reflects tardigrade diversity in different habitats. Genome. 2021;64(3):217–31.

Article 
CAS 
PubMed 

Google Scholar
 

Finnish Meteorological Institute. Available from: https://en.ilmatieteenlaitos.fi/. Cited 2025 Feb 24.

Menberu MW, Tahvanainen T, Marttila H, Irannezhad M, Ronkanen AK, Penttinen J, et al. Water-table-dependent hydrological changes following peatland forestry drainage and restoration: analysis of restoration success. Water Resource Res. 2016;52(5):3742–60.

Article 

Google Scholar