Antonini, E. G. A. et al. Identification of reliable locations for wind power generation through a global analysis of wind droughts. Commun. Earth Environ. 5, 103 (2024).


Google Scholar
 

ECHO. 31 January 2014: Eastern–Central Europe—Severe Weather. Reliefweb https://reliefweb.int/map/romania/31-january-2014-eastern-central-europe-severe-weather (2014).

Robbins, J. Gone with the winds? What happens if there is a ‘global terrestrial stilling’. Bulletin of the Atomic Scientists https://thebulletin.org/2022/09/gone-with-the-winds-what-happens-if-there-is-a-global-terrestrial-stilling/ (2022).

Ram, R. S. What is behind the curious decline in generation of renewable energy. mint www.livemint.com/market/mark-to-market/what-is-behind-the-curious-decline-in-generation-of-renewable-energy-11569864546939.html (2019).

Staffell, I., Green, R., Green, T. & Jansen, M. Q1 (2021). Electric Insights Quarterly Reports https://reports.electricinsights.co.uk/reports/q1-2021/ (2021)

Pechlivanidis, I. et al. Benchmarking Skill Assessment of Current Sub-Seasonal and Seasonal Forecast Systems for Users’ Selected Case Studies (S2S4E, 2019); https://s2s4e.eu/sites/default/files/2020-06/s2s4e_d41.pdf

Truyts, J. & Vandervelden, J. België telde negen dagen ‘Dunkelflaute’ in januari. vrtnws.be www.vrt.be/vrtnws/nl/2017/02/24/belgie_telde_negendagendunkelflauteinjanuari-1-2900900/ (2017).

Li, B., Basu, S., Watson, S. J. & Russchenberg, H. W. J. A brief climatology of Dunkelflaute events over and surrounding the North and Baltic Sea areas. Energies 14, 6508 (2021).


Google Scholar
 

Wetzel, D. Die, Dunkelflaute‘ bringt Deutschlands Stromversorgung ans Limit. WELT www.welt.de/wirtschaft/article161831272/Die-Dunkelflaute-bringt-Deutschlands-Stromversorgung-ans-Limit.html (2017).

Li, B., Basu, S., Watson, S. J. & Russchenberg, H. W. J. Quantifying the predictability of a ‘Dunkelflaute’ event by utilizing a mesoscale model. J. Phys. Conf. Ser. 1618, 062042 (2020).


Google Scholar
 

Bloomfield, H. What Europe’s exceptionally low winds mean for the future energy grid. The Conversation http://theconversation.com/what-europes-exceptionally-low-winds-mean-for-the-future-energy-grid-170135 (2021).

Rife, D., Krakauer, N., Cohan, D. & Collier, C. A new kind of drought: U.S. record low windiness in 2015. Earthzine https://earthzine.org/a-new-kind-of-drought-u-s-record-low-windiness-in-2015/ (2016).

Lledó, L., Bellprat, O., Doblas-Reyes, F. J. & Soret, A. Investigating the effects of Pacific sea surface temperatures on the wind drought of 2015 over the United States. J. Geophys. Res. Atmos. 123, 4837–4849 (2018).


Google Scholar
 

Hingtgen, J., Le, D., Davis, B. & Huang, B. Productivity and Status of Wind Generation in California (California Energy Commission, 2019). https://doi.org/10.13140/RG.2.2.35900.90244

The February 2021 Cold Weather Outages in Texas and the South Central United States (FERC, 2021); www.ferc.gov/media/february-2021-cold-weather-outages-texas-and-south-central-united-states-ferc-nerc-and

Liu, F., Wang, X., Sun, F. & Wang, H. Wind resource droughts in China. Environ. Res. Lett. 18, 094015 (2023).


Google Scholar
 

Ohba, M., Kanno, Y. & Bando, S. Effects of meteorological and climatological factors on extremely high residual load and possible future changes. Renew. Sust. Energ. Rev. 175, 113188 (2023).


Google Scholar
 

Ohba, M., Kanno, Y. & Nohara, D. Climatology of dark doldrums in Japan. Renew. Sust. Energ. Rev. 155, 111927 (2022).


Google Scholar
 

Shekhar, J., Saji, S., Agarwal, D., Ahmed, A. & Joseph, T. Assessing and Planning for Variability in India’s Wind Resource (CEEW, 2021); www.ceew.in/publications/studying-the-impact-of-unexpected-climate-change-on-wind-energy-sector-in-india

Dawkins, L. C. Weather and Climate Related Sensitivities and Risks in a Highly Renewable UK Energy System: A Literature Review (Met Office, 2019).

Zheng, D. et al. Climate change impacts on the extreme power shortage events of wind–solar supply systems worldwide during 1980–2022. Nat. Commun. 15, 5225 (2024).

CAS 

Google Scholar
 

Future of Wind: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects (International Renewable Energy Agency, 2019).

Martinez, A. & Iglesias, G. Global wind energy resources decline under climate change. Energy 288, 129765 (2024).


Google Scholar
 

Pryor, S. C., Barthelmie, R. J., Bukovsky, M. S., Leung, L. R. & Sakaguchi, K. Climate change impacts on wind power generation. Nat. Rev. Earth Environ. 1, 627–643 (2020).


Google Scholar
 

Pryor, S. C., Barthelmie, R. J. & Kjellström, E. Potential climate change impact on wind energy resources in northern Europe: analyses using a regional climate model. Clim. Dynam. 25, 815–835 (2005).


Google Scholar
 

Reyers, M., Moemken, J. & Pinto, J. G. Future changes of wind energy potentials over Europe in a large CMIP5 multi-model ensemble. Int. J. Climatol. 36, 783–796 (2016).


Google Scholar
 

Hueging, H., Haas, R., Born, K., Jacob, D. & Pinto, J. G. Regional changes in wind energy potential over Europe using regional climate model ensemble projections. J. Appl. Meteorol. Climatol. 52, 903–917 (2013).


Google Scholar
 

Tobin, I. et al. Assessing climate change impacts on European wind energy from ENSEMBLES high-resolution climate projections. Clim. Change 128, 99–112 (2015).


Google Scholar
 

Pryor, S. C., Barthelmie, R. J. & Schoof, J. T. Past and future wind climates over the contiguous USA based on the North American Regional Climate Change Assessment Program model suite. J. Geophys. Res. Atmos. https://doi.org/10.1029/2012JD017449 (2012).

Greene, J. S., Chatelain, M., Morrissey, M. & Stadler, S. Projected future wind speed and wind power density trends over the western US High Plains. Atmos. Clim. Sci. 02, 32–40 (2012).


Google Scholar
 

Pryor, S. C., Shepherd, T. J., Bukovsky, M. & Barthelmie, R. J. Assessing the stability of wind resource and operating conditions. J. Phys. Conf. Ser. 1452, 012084 (2020).


Google Scholar
 

Karnauskas, K. B., Lundquist, J. K. & Zhang, L. Southward shift of the global wind energy resource under high carbon dioxide emissions. Nat. Geosci. 11, 38–43 (2018).

CAS 

Google Scholar
 

IPCC. Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

Zha, J. et al. Projected changes in global terrestrial near-surface wind speed in 1.5 °C–4.0 °C global warming levels. Environ. Res. Lett. 16, 114016 (2021).


Google Scholar
 

Deng, K., Azorin-Molina, C., Minola, L., Zhang, G. & Chen, D. Global near-surface wind speed changes over the last decades revealed by reanalyses and CMIP6 model simulations. J. Clim. 34, 2219–2234 (2021).


Google Scholar
 

Russo, M. A., Carvalho, D., Martins, N. & Monteiro, A. Future perspectives for wind and solar electricity production under high-resolution climate change scenarios. J. Clean. Prod. 404, 136997 (2023).


Google Scholar
 

Claro, A., Santos, J. A. & Carvalho, D. Assessing the future wind energy potential in Portugal using a CMIP6 model ensemble and WRF high-resolution simulations. Energies 16, 661 (2023).


Google Scholar
 

Carvalho, D., Rocha, A., Costoya, X., deCastro, M. & Gómez-Gesteira, M. Wind energy resource over Europe under CMIP6 future climate projections: what changes from CMIP5 to CMIP6. Renew. Sust. Energ. Rev. 151, 111594 (2021).


Google Scholar
 

deCastro, M. et al. An overview of offshore wind energy resources in Europe under present and future climate. Ann. NY Acad. Sci. 1436, 70–97 (2019).


Google Scholar
 

Haupt, S. E. et al. A method to assess the wind and solar resource and to quantify interannual variability over the United States under current and projected future climate. J. Appl. Meteorol. Climatol. 55, 345–363 (2016).


Google Scholar
 

Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).


Google Scholar
 

Gelaro, R. et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).


Google Scholar
 

Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).


Google Scholar
 

O’Neill, B. C. et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).


Google Scholar
 

Brown, P. T., Farnham, D. J. & Caldeira, K. Meteorology and climatology of historical weekly wind and solar power resource droughts over western North America in ERA5. SN Appl. Sci. 3, 814 (2021).


Google Scholar
 

Davis, N. N. et al. The global wind atlas: a high-resolution dataset of climatologies and associated web-based application. Bull. Am. Meteorol. Soc. 104, E1507–E1525 (2023).


Google Scholar
 

Seltzer, A. M., Blard, P.-H., Sherwood, S. C. & Kageyama, M. Terrestrial amplification of past, present, and future climate change. Sci. Adv. 9, eadf8119 (2023).


Google Scholar
 

Rudeva, I., Gulev, S. K., Simmonds, I. & Tilinina, N. The sensitivity of characteristics of cyclone activity to identification procedures in tracking algorithms. Tellus A 66, 24961 (2014).


Google Scholar
 

McCabe, G. J., Clark, M. P. & Serreze, M. C. Trends in Northern Hemisphere surface cyclone frequency and intensity. J. Clim. 14, 2763–2768 (2001).


Google Scholar
 

Chang, E. K. M., Ma, C., Zheng, C. & Yau, A. M. W. Observed and projected decrease in Northern Hemisphere extratropical cyclone activity in summer and its impacts on maximum temperature. Geophys. Res. Lett. 43, 2200–2208 (2016).


Google Scholar
 

Gentile, E. S., Zhao, M. & Hodges, K. Poleward intensification of midlatitude extreme winds under warmer climate. npj Clim. Atmos. Sci. 6, 219 (2023).

Tamarin-Brodsky, T. & Kaspi, Y. Enhanced poleward propagation of storms under climate change. Nat. Geosci. 10, 908–913 (2017).

CAS 

Google Scholar
 

Seo, K.-H. et al. What controls the interannual variation of Hadley cell extent in the Northern Hemisphere: physical mechanism and empirical model for edge variation. npj Clim. Atmos. Sci. 6, 204 (2023).


Google Scholar
 

Shaw, T. A. et al. Storm track processes and the opposing influences of climate change. Nat. Geosci. 9, 656–664 (2016).

CAS 

Google Scholar
 

Thompson, V. et al. The most at-risk regions in the world for high-impact heatwaves. Nat. Commun. 14, 2152 (2023).

CAS 

Google Scholar
 

Fischer, E. M., Sippel, S. & Knutti, R. Increasing probability of record-shattering climate extremes. Nat. Clim. Change 11, 689–695 (2021).

CAS 

Google Scholar
 

Dunnett, S., Sorichetta, A., Taylor, G. & Eigenbrod, F. Harmonised global datasets of wind and solar farm locations and power. Sci. Data 7, 130 (2020).


Google Scholar
 

Pryor, S. C., Nikulin, G. & Jones, C. Influence of spatial resolution on regional climate model derived wind climates. J. Geophys. Res. Atmos. 117, 2011JD016822 (2012).


Google Scholar
 

Gutowski, W. J. Jr. et al. WCRP COordinated Regional Downscaling EXperiment (CORDEX): a diagnostic MIP for CMIP6. Geosci. Model Dev. 9, 4087–4095 (2016).


Google Scholar
 

Lake, I., Gutowski, W., Giorgi, F. & Lee, B. CORDEX: climate research and information for regions. Bull. Am. Meteorol. Soc. 98, ES189–ES192 (2017).


Google Scholar
 

Chen, X. et al. Pathway toward carbon-neutral electrical systems in China by mid-century with negative CO2 abatement costs informed by high-resolution modeling. Joule 5, 2715–2741 (2021).

CAS 

Google Scholar
 

Richardson, D., Pitman, A. J. & Ridder, N. N. Climate influence on compound solar and wind droughts in Australia. npj Clim. Atmos. Sci. 6, 184 (2023).


Google Scholar
 

Gernaat, D. E. H. J. et al. Climate change impacts on renewable energy supply. Nat. Clim. Change 11, 119–125 (2021).


Google Scholar
 

Chen, W.-H. & Hsieh, I.-Y. L. Techno-economic analysis of lithium-ion battery price reduction considering carbon footprint based on life cycle assessment. J. Clean. Prod. 425, 139045 (2023).

CAS 

Google Scholar
 

Staffell, I. et al. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 12, 463–491 (2019).

CAS 

Google Scholar
 

ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate (Copernicus Climate Data Store, accessed 8 May 2023); https://doi.org/10.24381/cds.adbb2d47

MERRA-2 tavg1_2d_slv_Nx: 2d,1-Hourly, Time-Averaged, Single-Level, Assimilation,Single-Level Diagnostics V5.12.4 (GES DISC, accessed 28 October 2022); https://doi.org/10.5067/VJAFPLI1CSIV

Jourdier, B. Evaluation of ERA5, MERRA-2, COSMO-REA6, NEWA and AROME to simulate wind power production over France. Adv. Sci. Res. 17, 63–77 (2020).


Google Scholar
 

Olauson, J. ERA5: The new champion of wind power modelling? Renew. Energy 126, 322–331 (2018).


Google Scholar
 

General Electric GE 2.5-120. Wind-turbine-models.com https://en.wind-turbine-models.com/turbines/310-ge-vernova-ge-2.5-120 (2018).

Gao, M. et al. Secular decrease of wind power potential in India associated with warming in the Indian Ocean. Sci. Adv. 4, eaat5256 (2018).


Google Scholar
 

Archer, C. L. & Jacobson, M. Z. Evaluation of global wind power. J. Geophys. Res. 110, D12110 (2005).


Google Scholar
 

Walton, R. A., Takle, E. S. & Gallus, W. A. Characteristics of 50–200-m winds and temperatures derived from an Iowa tall-tower network. J. Appl. Meteorol. Climatol. 53, 2387–2393 (2014).


Google Scholar
 

Friedl, M. & Sulla-Menashe, D. MCD12C1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05Deg CMG V006 (NASA Land Processes Distributed Active Archive Center, accessed 20 January 2023); https://doi.org/10.5067/MODIS/MCD12C1.006

Greene, C. A., Blankenship, D. D., Gwyther, D. E., Silvano, A. & van Wijk, E. Wind causes Totten Ice Shelf melt and acceleration. Sci. Adv. 3, e1701681 (2017).


Google Scholar
 

Cushing, L. J., Li, S., Steiger, B. B. & Casey, J. A. Historical red-lining is associated with fossil fuel power plant siting and present-day inequalities in air pollutant emissions. Nat. Energy 8, 52–61 (2023).


Google Scholar
 

Deng, K. et al. The offshore wind speed changes in China: an insight into CMIP6 model simulation and future projections. Clim. Dynam. 62, 3305–3319 (2024).


Google Scholar
 

Pryor, S. C. & Barthelmie, R. J. A global assessment of extreme wind speeds for wind energy applications. Nat. Energy 6, 268–276 (2021).


Google Scholar
 

Zeng, Z. et al. A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Clim. Change 9, 979–985 (2019).


Google Scholar
 

Eyring, V. et al. Reflections and projections on a decade of climate science. Nat. Clim. Change 11, 279–285 (2021).


Google Scholar
 

Tong, Y. et al. Bias correction of temperature and precipitation over China for RCM simulations using the QM and QDM methods. Clim. Dynam. 57, 1425–1443 (2021).


Google Scholar
 

Potisomporn, P., Adcock, T. A. A. & Vogel, C. R. Extreme value analysis of wind droughts in Great Britain. Renew. Energy 221, 119847 (2024).


Google Scholar
 

Coles, S. An Introduction to Statistical Modeling of Extreme Values (Springer, 2001).

Shiau, J. T. Return period of bivariate distributed extreme hydrological events. Stoch. Environ. Res. Risk Assess. 17, 42–57 (2003).


Google Scholar
 

Dunnett, S. Harmonised global datasets of wind and solar farm locations and power. figshare https://doi.org/10.6084/m9.figshare.11310269.v2 (2020).

Meng, Q. Prolonged wind droughts in a warming climate threaten global wind power security. Peking University Open Research Data Platform https://doi.org/10.18170/DVN/50VDAL (2024).