Zhang, Q. et al. Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021).

CAS 
PubMed 

Google Scholar
 

Wu, Y. et al. Manipulating polaritons at the extreme scale in van der Waals materials. Nat. Rev. Phys. 4, 578–594 (2022).


Google Scholar
 

Guo, X. et al. Polaritons in van der Waals heterostructures. Adv. Mater. 35, 2201856 (2022).


Google Scholar
 

Hu, H. et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons. Nat. Commun. 7, 12334 (2016).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hu, H. et al. Gas identification with graphene plasmons. Nat. Commun. 10, 1131 (2019).

PubMed 
PubMed Central 

Google Scholar
 

Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

CAS 
PubMed 

Google Scholar
 

Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018).

CAS 
PubMed 

Google Scholar
 

Taboada-Gutiérrez, J. et al. Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation. Nat. Mater. 19, 964–968 (2020).

PubMed 

Google Scholar
 

Zheng, Z. et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci. Adv. 5, eaav8690 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, C. et al. Van der Waals thin films of WTe2 for natural hyperbolic plasmonic surfaces. Nat. Commun. 11, 1158 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ni, X. et al. Observation of directional leaky polaritons at anisotropic crystal interfaces. Nat. Commun. 14, 2845 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Teng, H. et al. Steering and cloaking of hyperbolic polaritons at deep-subwavelength scales. Nat. Commun. 15, 4463 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ma, W. et al. Ghost hyperbolic surface polaritons in bulk anisotropic crystals. Nature 596, 362–366 (2021).

CAS 
PubMed 

Google Scholar
 

Passler, N. C. et al. Hyperbolic shear polaritons in low-symmetry crystals. Nature 602, 595–600 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hu, G. et al. Real-space nanoimaging of hyperbolic shear polaritons in a monoclinic crystal. Nat. Nanotechnol. 18, 64–70 (2023).

CAS 
PubMed 

Google Scholar
 

Hu, H. et al. Gate-tunable negative refraction of mid-infrared polaritons. Science 379, 558–561 (2023).

CAS 
PubMed 

Google Scholar
 

Sternbach, A. et al. Negative refraction in hyperbolic hetero-bicrystals. Science 379, 555–557 (2023).

CAS 
PubMed 

Google Scholar
 

Álvarez-Pérez, G. et al. Negative reflection of nanoscale-confined polaritons in a low-loss natural medium. Sci. Adv. 8, eabp8486 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Zhang, T., Zheng, C., Chen, Z. N. & Qiu, C. W. Negative reflection and negative refraction in biaxial van der Waals materials. Nano Lett. 22, 5607–5614 (2022).

CAS 
PubMed 

Google Scholar
 

Duan, J. et al. Planar refraction and lensing of highly confined polaritons in anisotropic media. Nat. Commun. 12, 4325 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, Q. et al. Unidirectionally excited phonon polaritons in high-symmetry orthorhombic crystals. Sci. Adv. 8, eabn9774 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Moccia, M., Castaldi, G., Alù, A. & Galdi, V. Leaky waves in flatland. Adv. Opt. Mater. 12, 2203121 (2024).

CAS 

Google Scholar
 

Monticone, F. & Alu, A. Leaky-wave theory, techniques, and applications: from microwaves to visible frequencies. Proc. IEEE 103, 793–821 (2015).


Google Scholar
 

Karl, N. J., McKinney, R. W., Monnai, Y., Mendis, R. & Mittleman, D. M. Frequency-division multiplexing in the terahertz range using a leaky-wave antenna. Nat. Photon. 9, 717–720 (2015).

CAS 

Google Scholar
 

Matsumoto, H., Watanabe, I., Kasamatsu, A. & Monnai, Y. Integrated terahertz radar based on leaky-wave coherence tomography. Nat. Electron. 3, 122–129 (2020).


Google Scholar
 

Huang, H. et al. Leaky-wave metasurfaces for integrated photonics. Nat. Nanotechnol. 18, 580–588 (2023).

CAS 
PubMed 

Google Scholar
 

Kong, G. S., Ma, H. F., Cai, B. G. & Cui, T. J. Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide. Sci. Rep. 6, 29600 (2016).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Alù, A., Bilotti, F., Engheta, N. & Vegni, L. Subwavelength planar leaky-wave components with metamaterial bilayers. IEEE Trans. Antennas Propag. 55, 882–891 (2007).


Google Scholar
 

Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).

CAS 
PubMed 

Google Scholar
 

Chen, M. et al. Configurable phonon polaritons in twisted α-MoO3. Nat. Mater. 19, 1307–1311 (2020).

CAS 
PubMed 

Google Scholar
 

Duan, J. et al. Twisted nano-optics: manipulating light at the nanoscale with twisted phonon polaritonic slabs. Nano Lett. 20, 5323–5329 (2020).

CAS 
PubMed 

Google Scholar
 

Zheng, Z. et al. Phonon polaritons in twisted double-layers of hyperbolic van der Waals crystals. Nano Lett. 20, 5301–5308 (2020).

CAS 
PubMed 

Google Scholar
 

Liu, F. et al. Integrated Cherenkov radiation emitter eliminating the electron velocity threshold. Nat. Photon. 11, 289–292 (2017).


Google Scholar
 

Lin, X. et al. Controlling Cherenkov angles with resonance transition radiation. Nat. Phys. 14, 816–821 (2018).

CAS 

Google Scholar
 

Xue, S., Zeng, Y., Bao, Q., Zhu, S. & Chen, H. Tunable Cherenkov radiation based on a van der Waals semiconductor α-MoO3 and graphene hybrid. Opt. Lett. 47, 2458–2461 (2022).

CAS 
PubMed 

Google Scholar
 

Hu, H. et al. Surface Dyakonov–Cherenkov radiation. eLight 2, 2 (2022).


Google Scholar
 

Pons-Valencia, P. et al. Launching of hyperbolic phonon-polaritons in h-BN slabs by resonant metal plasmonic antennas. Nat. Commun. 10, 3242 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Maciel-Escudero, C., Konečná, A., Hillenbrand, R. & Aizpurua, J. Probing and steering bulk and surface phonon polaritons in uniaxial materials using fast electrons: hexagonal boron nitride. Phys. Rev. B 102, 115431 (2020).

CAS 

Google Scholar
 

Moccia, M., Castaldi, G., Alù, A. & Galdi, V. Exploring interface effects in flatland optics. In 2023 Seventeenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials) X-114–X-116 (IEEE, 2023).

Sun, Y. et al. Direct measurement of polariton–polariton interaction strength. Nat. Phys. 13, 870–875 (2017).

CAS 

Google Scholar
 

Zhang, Y. et al. Tunable Cherenkov radiation of phonon polaritons in silver nanowire/hexagonal boron nitride heterostructures. Nano Lett. 20, 2770–2777 (2020).

CAS 
PubMed 

Google Scholar
 

Guo, X. et al. Mid-infrared analogue polaritonic reversed Cherenkov radiation in natural anisotropic crystals. Nat. Commun. 14, 2532 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hu, H. et al. Doping-driven topological polaritons in graphene/α-MoO3 heterostructures. Nat. Nanotechnol. 17, 940–946 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ruta, F. L. et al. Surface plasmons induce topological transition in graphene/α-MoO3 heterostructures. Nat. Commun. 13, 3719 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hu, H. et al. Active control of micrometer plasmon propagation in suspended graphene. Nat. Commun. 13, 1465 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Qu, Y. et al. Tunable planar focusing based on hyperbolic phonon polaritons in α-MoO3. Adv. Mater. 34, 2105590 (2022).

CAS 

Google Scholar
 

Correas-Serrano, D. & Gomez-Diaz, J. S. Nonreciprocal and collimated surface plasmons in drift-biased graphene metasurfaces. Phys. Rev. B 100, 081410 (2019).

CAS 

Google Scholar
 

Rus, J., Bossart, A., Apffel, B., Malléjac, M. & Fleury, R. Experimental observation of parabolic wakes in thin plates. Phys. Rev. Res. 6, L032027 (2024).

CAS 

Google Scholar
 

Chaves, A. J., Peres, N. M. R., Smirnov, G. & Mortensen, N. A. Hydrodynamic model approach to the formation of plasmonic wakes in graphene. Phys. Rev. B 96, 195438 (2017).


Google Scholar