Bradbury, J. W. & Vehrencamp, S. L. Principles of Animal Communicationvol. 132 (Sinauer Associates, 1998).

Brenowitz, E. A., Margoliash, D. & Nordeen, K. W. An introduction to birdsong and the avian song system. J. Neurobiol. 33 (5), 495–500 (1997).

CAS 

Google Scholar
 

Demartsev, V. et al. The progression pattern of male hyrax songs and the role of climactic ending. Sci. Rep. 7, 2794 (2017).

ADS 

Google Scholar
 

Bohn, K. M., Schmidt-French, B., Schwartz, C., Smotherman, M. & Pollak, G. D. Versatility and stereotypy of Free-Tailed Bat songs. PLoS One. 4, e6746 (2009).

ADS 

Google Scholar
 

Haraway, M. M. & Maples, E. G. Flexibility in the species-typical songs of Gibbons. Primates 39, 1 (1998).


Google Scholar
 

Clarke, E., Reichard, U. H. & Zuberbühler, K. The syntax and meaning of wild Gibbon songs. PLoS One. 1, e73 (2006).

ADS 

Google Scholar
 

Holy, T. E. & Guo, Z. Ultrasonic songs of male mice. PLoS Biol. 3, e386 (2005).


Google Scholar
 

Allen, J. A., Garland, E. C., Dunlop, R. A. & Noad, M. J. Cultural revolutions reduce complexity in the songs of humpback whales. Proceedings of the Royal Society B: Biological Sciences 285, 20182088 (2018).

Payne, R. S. & McVay, S. Songs of humpback whales. Sci. (1979). 173, 585–597 (1971).

CAS 

Google Scholar
 

Lameira, A. R. et al. Predator guild does not influence orangutan alarm call rates and combinations. Behav. Ecol. Sociobiol. 67, 519–528 (2013).


Google Scholar
 

McCowan, B., Doyle, L. R. & Hanser, S. F. Using information theory to assess the diversity, complexity, and development of communicative repertoires. J. Comp. Psychol. 116, 166–172 (2002).


Google Scholar
 

Sharma, P. et al. Contextual and combinatorial structure in sperm Whale vocalisations. Nat. Commun. 15, 3617 (2024).

ADS 
CAS 

Google Scholar
 

Watkins, W. A. & Schevill, W. E. Sperm Whale Codas. J. Acoust. Soc. Am. 62, 1485–1490 (1977).

ADS 

Google Scholar
 

Riesch, R., Ford, J. K. B. & Thomsen, F. Whistle sequences in wild killer whales (Orcinus orca). J. Acoust. Soc. Am. 124, 1822–1829 (2008).

ADS 

Google Scholar
 

Selbmann, A., Miller, P. J. O., Wensveen, P. J., Svavarsson, J. & Samarra, F. I. P. Call combination patterns in Icelandic killer whales (Orcinus orca). Sci. Rep. 13, 21771 (2023).

ADS 
CAS 

Google Scholar
 

Sayigh, L., Quick, N., Hastie, G. & Tyack, P. Repeated call types in short-finned pilot whales, Globicephala macrorhynchus. Mar. Mamm. Sci. 29, 312–324 (2013).


Google Scholar
 

McCowan, B., Hanser, S. F. & Doyle, L. R. Quantitative tools for comparing animal communication systems: information theory applied to bottlenose Dolphin whistle repertoires. Anim. Behav. 57, 409–419 (1999).

CAS 

Google Scholar
 

Luís, A. R., Alves, I. S., Sobreira, F. V., Couchinho, M. N. & dos Santos, M. E. Brays and bits: information theory applied to acoustic communication sequences of bottlenose dolphins. Bioacoustics 28, 286–296 (2019).


Google Scholar
 

Rogers, T. L., Cato, D. H. & Bryden, M. M. Behavioral significance of underwater vocalizations of captive Leopard seals, Hydrurga leptonyx. Mar. Mamm. Sci. 12, 414–427 (1996).


Google Scholar
 

Stirling, I. & Siniff, D. Underwater vocalizations of Leopard seals (Hydrurga leptonyx) and crabeater seals (Lobodon carcinophagus) near the South Shetland islands, Antarctica. Can. J. Zool. 57, 1244–1248 (1979).


Google Scholar
 

Thomas, J. A. & DeMaster, D. P. An acoustic technique for determining diurnal activities in Leopard (Hydrurga leptonyx) and crabeater (Lobodon carcinophagus) seal. Can. J. Zool. 60, 2028–2031 (1982).


Google Scholar
 

Rogers, T. L. Source levels of the underwater calls of a male Leopard seal. J. Acoust. Soc. Am. 136, 1495–1498 (2014).

ADS 

Google Scholar
 

Rogers, T. L. Factors influencing the acoustic behaviour of male phocid seals. Aquat. Mamm. 29, 247–260 (2003).


Google Scholar
 

Shabangu, F. W. & Rogers, T. L. Summer circumpolar acoustic occurrence and call rates of ross, Ommatophoca rossii, and leopard, Hydrurga leptonyx, seals in the Southern ocean. Polar Biol. 44, 433–450 (2021).


Google Scholar
 

Borsa, P. Seasonal occurrence of the Leopard seal, Hydrurga leptonyx, in the kerguelen Islands. Can. J. Zool. 68, 405–408 (1990).


Google Scholar
 

Meade, J. et al. Spatial patterns in activity of Leopard seals Hydrurga leptonyx in relation to sea ice. Mar. Ecol. Prog Ser. 521, 265–275 (2015).

ADS 

Google Scholar
 

Rogers, T. & Bryden, M. M. Predation of adélie Penguins (Pygoscelis adeliae) by Leopard seals (Hydrurga leptonyx) in Prydz bay, Antarctica. Can. J. Zool. 73, 1001–1004 (1995).


Google Scholar
 

Rogers, T. L. Calling underwater is a costly signal: size-related differences in the call rates of Antarctic Leopard seals. Curr. Zool. 63, 433–443 (2017).


Google Scholar
 

Rogers, T. L. & Bryden, M. M. Density and haul-out behaviour of Leopard seals (Hydrurga leptonyx) in Prydz bay, Antarctica. Mar. Mamm. Sci. 13, 293–302 (1997).


Google Scholar
 

Rogers, T., Cato, D. H. & Bryden, M. M. Underwater vocal repertoire of the Leopard seal (Hydrurga leptonyx) in Prydz bay, Antarctica. in Sensory Abilities of Aquatic Animals (ed Kastelein, R. A. et al.) 223–236 (DeSpil., Amsterdam, 1995).


Google Scholar
 

Rogers, T. & Cato, D. Individual variation in the acoustic behaviour of the adult male Leopard seal, Hydrurga leptonyx. Behaviour 139, 1267–1286 (2002).


Google Scholar
 

Arnon, I. et al. Whale song shows language-like statistical structure. Sci. (1979). 387, 649–653 (2025).

CAS 

Google Scholar
 

Youngblood, M. Language-like efficiency in Whale communication. Sci. Adv. 11, eads6014 (2025).


Google Scholar
 

Hersh, T. A., Ravignani, A. & Whitehead, H. Cetaceans are the next frontier for vocal rhythm research. Proceedings of the National Academy of Sciences 121, (2024).

Fitch, W. T. The evolution of music in comparative perspective. Ann. N Y Acad. Sci. 1060, 29–49 (2005).

ADS 

Google Scholar
 

Rohrmeier, M., Zuidema, W., Wiggins, G. A. & Scharff, C. Principles of structure Building in music, Language and animal song. Philosophical Trans. Royal Soc. B: Biol. Sci. 370, 20140097 (2015).


Google Scholar
 

Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

MathSciNet 

Google Scholar
 

Cover, T. M. & Thomas, J. A. Elements of Information Theory (John Wiley & Sons, Inc., 2006).

Kershenbaum, A. Entropy rate as a measure of animal vocal complexity. Bioacoustics 23, 195–208 (2014).


Google Scholar
 

Ames, C. The Markov process as a compositional model: A survey and tutorial. MIT Press. 22, 175–187 (1989).


Google Scholar
 

Manzara, L. C., Witten, I. H. & James, M. On the entropy of music: an experiment with Bach chorale melodies. Leonardo Music J. 2, 81 (1992).


Google Scholar
 

Margulis, E. H. & Beatty, A. P. Musical style, psychoaesthetics, and prospects for entropy as an analytic tool. Comput. Music J. 32, 64–78 (2008).


Google Scholar
 

Gündüz, G. Entropy, energy, and instability in music. Phys. A: Stat. Mech. Its Appl. 609, 128365 (2023).

MathSciNet 

Google Scholar
 

Moore, J. M., Corrêa, D. C. & Small, M. Is bach’s brain a Markov chain? Recurrence quantification to assess Markov order for short, symbolic, musical compositions. Chaos: Interdisc. J. Nonlinear Sci. 28, 085715 (2018).


Google Scholar
 

Knopoff, L. & Hutchinson, W. Entropy as a measure of style: the influence of sample length. J. Music Ther. 27, 75–97 (1983).


Google Scholar
 

Pollastri, E. & Simoncelli, G. Classification of melodies by composer with hidden Markov models. in Proceedings First International Conference on WEB Delivering of Music. WEDELMUSIC 88–95 (IEEE Comput. Soc, 2001). 88–95 (IEEE Comput. Soc, 2001). (2001). https://doi.org/10.1109/WDM.2001.990162

Hedges, S. A. Dice music in the eighteenth century. Music Lett. 59, 180–187 (1978).


Google Scholar
 

Collins, T., Laney, R., Willis, A., Garthwaite, P. H. & Chopin Mazurkas Markov Significance 8, 154–159 (2011).


Google Scholar
 

Kershenbaum, A. et al. Animal vocal sequences: not the Markov chains we thought they were. Proc. Royal Soc. B: Biol. Sci. 281, 20141370 (2014).


Google Scholar
 

Wyner, A. D. & Ziv, J. The sliding-window Lempel-Ziv algorithm is asymptotically optimal. Proc. IEEE. 82, 872–877 (1994).


Google Scholar
 

Wyner, A. D., Ziv, J. & Wyner, A. J. On the role of pattern matching in information theory. IEEE Trans. Inf. Theory. 44, 2045–2056 (1998).

MathSciNet 

Google Scholar
 

Ziv, J. & Lempel, A. A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory. 23, 337–343 (1977).

MathSciNet 

Google Scholar
 

Suzuki, R., Buck, J. R. & Tyack, P. L. Information entropy of humpback Whale songs. J. Acoust. Soc. Am. 119, 1849–1866 (2006).

ADS 

Google Scholar
 

Pinkerton, R. Information theory and melody. Sci. Am. 194, 77–87 (1956).


Google Scholar
 

Youngblood, J. E. Style as information. J. Music Theory. 2, 24 (1958).


Google Scholar
 

Miksis-Olds, J. L., Buck, J. R., Noad, M. J. & Cato, D. H. Dale stokes, M. Information theory analysis of Australian humpback Whale song. J. Acoust. Soc. Am. 124, 2385–2393 (2008).

ADS 

Google Scholar
 

Lamoni, L. et al. Variability in humpback Whale songs reveals how individuals can be distinctive when sharing a complex vocal display. J. Acoust. Soc. Am. 153, 2238–2250 (2023).

ADS 

Google Scholar
 

Parsons, E. C. M., Wright, A. J. & Gore, M. A. The nature of humpback Whale (Megaptera novaeangliae) song. J. Mar. Anim. Ecol. 1, 22–31 (2008).


Google Scholar
 

Kershenbaum, A. et al. Acoustic sequences in non-human animals: a tutorial review and prospectus. Biol. Rev. 91, 13–52 (2016).


Google Scholar
 

Stirling, I. & Thomas, J. A. Relationships between underwater vocalizations and mating systems in phocid seals. Aquat. Mamm. 29, 227–246 (2003).


Google Scholar
 

Oliveira, C. et al. Sperm Whale Codas May encode individuality as well as clan identity. J. Acoust. Soc. Am. 139, 2860–2869 (2016).

ADS 

Google Scholar
 

Antunes, R. et al. Individually distinctive acoustic features in sperm Whale Codas. Anim. Behav. 81, 723–730 (2011).


Google Scholar
 

Gero, S., Whitehead, H. & Rendell, L. Individual, unit and vocal clan level identity cues in sperm Whale Codas. R Soc. Open. Sci. 3, 150372 (2016).

ADS 

Google Scholar
 

Wyner, A. D. & Ziv, J. Some asymptotic properties of the entropy of a stationary ergodic data source with applications to data compression. IEEE Trans. Inf. Theory. 35, 1250–1258 (1989).

MathSciNet 

Google Scholar
 

Basharin, G. P. On a statistical estimate for the entropy of a sequence of independent random variables. Theory Probab. Its Appl. 4, 333–336 (1959).

MathSciNet 

Google Scholar
 

Payne, K., Tyack, P. & Payne, R. Progressive changes in the songs of humpback whales (Megaptera novaeangliae): A detailed analysis of two seasons in Hawaii. in Communication and Behavior of Whales, AAAS Selected Symposium 76 (ed. Payne, R.) 9–58Westview, Boulder, CO, (1983).