Faddeev, L. D. Quantization of solitons. In Proc. 18th International Conference on High-Energy Physics (1975).
Faddeev, L. & Niemi, A. J. Stable knot-like structures in classical field theory. Nature 387, 58–61 (1997).
Faddeev, L. & Niemi, A. J. Partially dual variables in SU(2) Yang-Mills theory. Phys. Rev. Lett. 82, 1624–1627 (1999).
Rañada, A. F. & Trueba, J. L. Ball lightning an electromagnetic knot?. Nature 383, 32 (1996).
Radu, E. & Volkov, M. S. Stationary ring solitons in field theory—knots and vortons. Phys. Rep. 468, 101–151 (2008).
Ackerman, P. J. & Smalyukh, I. I. Static three-dimensional topological solitons in fluid chiral ferromagnets and colloids. Nat. Mater. 16, 426–432 (2017).
Mermin, N. D. The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979).
Kosevich, A. M., Ivanov, B. A. & Kovalev, A. S. Magnetic solitons. Phys. Rep. 194, 117–238 (1990).
Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).
Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).
Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).
Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).
Göbel, B., Mertig, I. & Tretiakov, O. A. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles. Phys. Rep. 895, 1–28 (2021).
Pershoguba, S. S., Andreoli, D. & Zang, J. Electronic scattering off a magnetic hopfion. Phys. Rev. B 104, 075102 (2021).
Liu, Y., Watanabe, H. & Nagaosa, N. Emergent magnetomultipoles and nonlinear responses of a magnetic hopfion. Phys. Rev. Lett. 129, 267201 (2022).
Raftrey, D. & Fischer, P. Field-driven dynamics of magnetic hopfions. Phys. Rev. Lett. 127, 257201 (2021).
Tai, J.-S. B. & Smalyukh, I. I. Three-dimensional crystals of adaptive knots. Science 365, 1449–1453 (2019).
Voinescu, R., Tai, J.-S. B. & Smalyukh, I. I. Hopf solitons in helical and conical backgrounds of chiral magnetic solids. Phys. Rev. Lett. 125, 057201 (2020).
Kuchkin, V. M. et al. Heliknoton in a film of cubic chiral magnet. Front. Phys. 11, 1201018 (2023).
Liu, Y., Lake, R. K. & Zang, J. Binding a hopfion in a chiral magnet nanodisk. Phys. Rev. B 98, 174437 (2018).
Sutcliffe, P. Skyrmion knots in frustrated magnets. Phys. Rev. Lett. 118, 247203 (2017).
Wilczek, F. & Zee, A. Linking numbers, spin, and statistics of solitons. Phys. Rev. Lett. 51, 2250–2252 (1983).
Legrand, W. et al. Room-temperature current-induced generation and motion of sub-100 nm skyrmions. Nano Lett. 17, 2703–2712 (2017).
Wang, W. et al. Electrical manipulation of skyrmions in a chiral magnet. Nat. Commun. 13, 1593 (2022).
Song, D. et al. Steady motion of 80-nm-size skyrmions in a 100-nm-wide track. Nat. Commun. 15, 5614 (2024).
Zheng, F. et al. Hopfion rings in a cubic chiral magnet. Nature 623, 718–723 (2023).
Seki, S. et al. Direct visualization of the three-dimensional shape of skyrmion strings in a noncentrosymmetric magnet. Nat. Mater. 21, 181–187 (2022).
Wolf, D. et al. Unveiling the three-dimensional magnetic texture of skyrmion tubes. Nat. Nanotechnol. 17, 250–255 (2022).
Yu, X. et al. Real-space observations of three-dimensional antiskyrmions and skyrmion strings. Nano Lett. 22, 9358–9364 (2022).
Raftrey, D. et al. Quantifying the topology of magnetic skyrmions in three dimensions. Sci. Adv. 10, eadp8615 (2024).
Zhang, S. & Li, Z. Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys. Rev. Lett. 93, 127204 (2004).
Peng, L. et al. Dynamic transition of current-driven single-skyrmion motion in a room-temperature chiral-lattice magnet. Nat. Commun. 12, 6797 (2021).
Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2017).
Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017).
Yang, S. et al. Fundamentals and applications of the skyrmion Hall effect. Appl. Phys. Rev. 11, 041335 (2024).
Song, D. et al. Experimental observation of one-dimensional motion of interstitial skyrmion in FeGe. Preprint at https://doi.org/10.48550/arXiv.2212.08991 (2022).
Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).
Caretta, L. et al. Relativistic kinematics of a magnetic soliton. Science 370, 1438–1442 (2020).
Shen, Y. et al. Optical skyrmions and other topological quasiparticles of light. Nat. Photon. 18, 15–25 (2024).
Gubbiotti, G. et al. 2025 roadmap on 3D nano-magnetism. J. Phys. Condens. Matter 37, 143502 (2025).
Zhang, Z. et al. Magnon scattering modulated by omnidirectional hopfion motion in antiferromagnets for meta-learning. Sci. Adv. 9, eade7439 (2023).
Fernández-Pacheco, A. et al. Three-dimensional nanomagnetism. Nat. Commun. 8, 15756 (2017).
Donnelly, C. et al. Three-dimensional magnetization structures revealed with X-ray vector nanotomography. Nature 547, 328–331 (2017).
Donnelly, C. et al. Experimental observation of vortex rings in a bulk magnet. Nat. Phys. 17, 316–321 (2021).
Azhar, M., Kravchuk, V. P. & Garst, M. Screw dislocations in chiral magnets. Phys. Rev. Lett. 128, 157204 (2022).
Guslienko, K. Y. Emergent magnetic field and vector potential of the toroidal magnetic hopfions. Chaos Solitons Fractals 174, 113840 (2023).
Azhar, M., Shaju, S. C., Knapman, R., Pignedoli, A. & Everschor-Sitte, K. 3D magnetic textures with mixed topology: unlocking the tunable Hopf index. Preprint at https://doi.org/10.48550/arXiv.2411.06929 (2024).
Donnelly, C. et al. in Curvilinear Micromagnetism: From Fundamentals to Applications (eds Makarov, D. & Sheka, D. D.) 269–304 (Springer International Publishing, 2022).
Tokunaga, Y. et al. A new class of chiral materials hosting magnetic skyrmions beyond room temperature. Nat. Commun. 6, 7638 (2015).
Liu, Y. & Nagaosa, N. Current-induced creation of topological vortex rings in a magnetic nanocylinder. Phys. Rev. Lett. 132, 126701 (2024).
Völkl, E., Allard, L. F. & Frost, B. A software package for the processing and reconstruction of electron holograms. J. Microsc. 180, 39–50 (1995).
Tonomura, A. et al. Observation of Aharonov-Bohm effect by electron holography. Phys. Rev. Lett. 48, 1443–1446 (1982).
McCray, A. R. C., Cote, T., Li, Y., Petford-Long, A. K. & Phatak, C. Understanding complex magnetic spin textures with simulation-assisted Lorentz transmission electron microscopy. Phys. Rev. Appl. 15, 044025 (2021).
Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).
Wang, W., Lyu, B., Kong, L., Fangohr, H. & Du, H. MicroMagnetic.jl: a Julia package for micromagnetic and atomistic simulations with GPU support. Chin. Phys. B 33, 107508 (2024).
Ludgren, L., Beckman, O., Attia, V., Bhattacheriee, S. P. & Richardson, M. Helical spin arrangement in cubic FeGe. Phys. Scr. 1, 69 (1970).
Yin, G. et al. Topological charge analysis of ultrafast single skyrmion creation. Phys. Rev. B 93, 174403 (2016).
Thiele, A. A. Steady-state motion of magnetic domains. Phys. Rev. Lett. 30, 230–233 (1973).
Tretiakov, O. A., Clarke, D., Chern, G.-W., Bazaliy, Y.aB. & Tchernyshyov, O. Dynamics of domain walls in magnetic nanostrips. Phys. Rev. Lett. 100, 127204 (2008).