Faddeev, L. D. Quantization of solitons. In Proc. 18th International Conference on High-Energy Physics (1975).

Faddeev, L. & Niemi, A. J. Stable knot-like structures in classical field theory. Nature 387, 58–61 (1997).

Article 

Google Scholar
 

Faddeev, L. & Niemi, A. J. Partially dual variables in SU(2) Yang-Mills theory. Phys. Rev. Lett. 82, 1624–1627 (1999).

Article 
CAS 

Google Scholar
 

Rañada, A. F. & Trueba, J. L. Ball lightning an electromagnetic knot?. Nature 383, 32 (1996).

Article 

Google Scholar
 

Radu, E. & Volkov, M. S. Stationary ring solitons in field theory—knots and vortons. Phys. Rep. 468, 101–151 (2008).

Article 
CAS 

Google Scholar
 

Ackerman, P. J. & Smalyukh, I. I. Static three-dimensional topological solitons in fluid chiral ferromagnets and colloids. Nat. Mater. 16, 426–432 (2017).

Article 
PubMed 
CAS 

Google Scholar
 

Mermin, N. D. The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979).

Article 
CAS 

Google Scholar
 

Kosevich, A. M., Ivanov, B. A. & Kovalev, A. S. Magnetic solitons. Phys. Rep. 194, 117–238 (1990).

Article 
CAS 

Google Scholar
 

Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

Article 
PubMed 

Google Scholar
 

Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

Article 
PubMed 
CAS 

Google Scholar
 

Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

Article 
PubMed 
CAS 

Google Scholar
 

Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

Article 
CAS 

Google Scholar
 

Göbel, B., Mertig, I. & Tretiakov, O. A. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles. Phys. Rep. 895, 1–28 (2021).

Article 

Google Scholar
 

Pershoguba, S. S., Andreoli, D. & Zang, J. Electronic scattering off a magnetic hopfion. Phys. Rev. B 104, 075102 (2021).

Article 
CAS 

Google Scholar
 

Liu, Y., Watanabe, H. & Nagaosa, N. Emergent magnetomultipoles and nonlinear responses of a magnetic hopfion. Phys. Rev. Lett. 129, 267201 (2022).

Article 
PubMed 
CAS 

Google Scholar
 

Raftrey, D. & Fischer, P. Field-driven dynamics of magnetic hopfions. Phys. Rev. Lett. 127, 257201 (2021).

Article 
PubMed 
CAS 

Google Scholar
 

Tai, J.-S. B. & Smalyukh, I. I. Three-dimensional crystals of adaptive knots. Science 365, 1449–1453 (2019).

Article 
PubMed 
CAS 

Google Scholar
 

Voinescu, R., Tai, J.-S. B. & Smalyukh, I. I. Hopf solitons in helical and conical backgrounds of chiral magnetic solids. Phys. Rev. Lett. 125, 057201 (2020).

Article 
PubMed 
CAS 

Google Scholar
 

Kuchkin, V. M. et al. Heliknoton in a film of cubic chiral magnet. Front. Phys. 11, 1201018 (2023).

Liu, Y., Lake, R. K. & Zang, J. Binding a hopfion in a chiral magnet nanodisk. Phys. Rev. B 98, 174437 (2018).

Article 
CAS 

Google Scholar
 

Sutcliffe, P. Skyrmion knots in frustrated magnets. Phys. Rev. Lett. 118, 247203 (2017).

Article 
PubMed 

Google Scholar
 

Wilczek, F. & Zee, A. Linking numbers, spin, and statistics of solitons. Phys. Rev. Lett. 51, 2250–2252 (1983).

Article 

Google Scholar
 

Legrand, W. et al. Room-temperature current-induced generation and motion of sub-100 nm skyrmions. Nano Lett. 17, 2703–2712 (2017).

Article 
PubMed 
CAS 

Google Scholar
 

Wang, W. et al. Electrical manipulation of skyrmions in a chiral magnet. Nat. Commun. 13, 1593 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Song, D. et al. Steady motion of 80-nm-size skyrmions in a 100-nm-wide track. Nat. Commun. 15, 5614 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Zheng, F. et al. Hopfion rings in a cubic chiral magnet. Nature 623, 718–723 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Seki, S. et al. Direct visualization of the three-dimensional shape of skyrmion strings in a noncentrosymmetric magnet. Nat. Mater. 21, 181–187 (2022).

Article 
PubMed 
CAS 

Google Scholar
 

Wolf, D. et al. Unveiling the three-dimensional magnetic texture of skyrmion tubes. Nat. Nanotechnol. 17, 250–255 (2022).

Article 
PubMed 
CAS 

Google Scholar
 

Yu, X. et al. Real-space observations of three-dimensional antiskyrmions and skyrmion strings. Nano Lett. 22, 9358–9364 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Raftrey, D. et al. Quantifying the topology of magnetic skyrmions in three dimensions. Sci. Adv. 10, eadp8615 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Zhang, S. & Li, Z. Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys. Rev. Lett. 93, 127204 (2004).

Article 
PubMed 
CAS 

Google Scholar
 

Peng, L. et al. Dynamic transition of current-driven single-skyrmion motion in a room-temperature chiral-lattice magnet. Nat. Commun. 12, 6797 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2017).

Article 
CAS 

Google Scholar
 

Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017).

Article 
CAS 

Google Scholar
 

Yang, S. et al. Fundamentals and applications of the skyrmion Hall effect. Appl. Phys. Rev. 11, 041335 (2024).

Song, D. et al. Experimental observation of one-dimensional motion of interstitial skyrmion in FeGe. Preprint at https://doi.org/10.48550/arXiv.2212.08991 (2022).

Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

Article 
PubMed 
CAS 

Google Scholar
 

Caretta, L. et al. Relativistic kinematics of a magnetic soliton. Science 370, 1438–1442 (2020).

Article 
PubMed 
CAS 

Google Scholar
 

Shen, Y. et al. Optical skyrmions and other topological quasiparticles of light. Nat. Photon. 18, 15–25 (2024).

Article 
CAS 

Google Scholar
 

Gubbiotti, G. et al. 2025 roadmap on 3D nano-magnetism. J. Phys. Condens. Matter 37, 143502 (2025).

Zhang, Z. et al. Magnon scattering modulated by omnidirectional hopfion motion in antiferromagnets for meta-learning. Sci. Adv. 9, eade7439 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fernández-Pacheco, A. et al. Three-dimensional nanomagnetism. Nat. Commun. 8, 15756 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Donnelly, C. et al. Three-dimensional magnetization structures revealed with X-ray vector nanotomography. Nature 547, 328–331 (2017).

Article 
PubMed 
CAS 

Google Scholar
 

Donnelly, C. et al. Experimental observation of vortex rings in a bulk magnet. Nat. Phys. 17, 316–321 (2021).

Article 
CAS 

Google Scholar
 

Azhar, M., Kravchuk, V. P. & Garst, M. Screw dislocations in chiral magnets. Phys. Rev. Lett. 128, 157204 (2022).

Article 
PubMed 
CAS 

Google Scholar
 

Guslienko, K. Y. Emergent magnetic field and vector potential of the toroidal magnetic hopfions. Chaos Solitons Fractals 174, 113840 (2023).

Article 

Google Scholar
 

Azhar, M., Shaju, S. C., Knapman, R., Pignedoli, A. & Everschor-Sitte, K. 3D magnetic textures with mixed topology: unlocking the tunable Hopf index. Preprint at https://doi.org/10.48550/arXiv.2411.06929 (2024).

Donnelly, C. et al. in Curvilinear Micromagnetism: From Fundamentals to Applications (eds Makarov, D. & Sheka, D. D.) 269–304 (Springer International Publishing, 2022).

Tokunaga, Y. et al. A new class of chiral materials hosting magnetic skyrmions beyond room temperature. Nat. Commun. 6, 7638 (2015).

Article 
PubMed 
CAS 

Google Scholar
 

Liu, Y. & Nagaosa, N. Current-induced creation of topological vortex rings in a magnetic nanocylinder. Phys. Rev. Lett. 132, 126701 (2024).

Article 
PubMed 
CAS 

Google Scholar
 

Völkl, E., Allard, L. F. & Frost, B. A software package for the processing and reconstruction of electron holograms. J. Microsc. 180, 39–50 (1995).

Article 

Google Scholar
 

Tonomura, A. et al. Observation of Aharonov-Bohm effect by electron holography. Phys. Rev. Lett. 48, 1443–1446 (1982).

Article 

Google Scholar
 

McCray, A. R. C., Cote, T., Li, Y., Petford-Long, A. K. & Phatak, C. Understanding complex magnetic spin textures with simulation-assisted Lorentz transmission electron microscopy. Phys. Rev. Appl. 15, 044025 (2021).

Article 
CAS 

Google Scholar
 

Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).

Article 

Google Scholar
 

Wang, W., Lyu, B., Kong, L., Fangohr, H. & Du, H. MicroMagnetic.jl: a Julia package for micromagnetic and atomistic simulations with GPU support. Chin. Phys. B 33, 107508 (2024).

Article 

Google Scholar
 

Ludgren, L., Beckman, O., Attia, V., Bhattacheriee, S. P. & Richardson, M. Helical spin arrangement in cubic FeGe. Phys. Scr. 1, 69 (1970).

Article 

Google Scholar
 

Yin, G. et al. Topological charge analysis of ultrafast single skyrmion creation. Phys. Rev. B 93, 174403 (2016).

Article 

Google Scholar
 

Thiele, A. A. Steady-state motion of magnetic domains. Phys. Rev. Lett. 30, 230–233 (1973).

Article 

Google Scholar
 

Tretiakov, O. A., Clarke, D., Chern, G.-W., Bazaliy, Y.aB. & Tchernyshyov, O. Dynamics of domain walls in magnetic nanostrips. Phys. Rev. Lett. 100, 127204 (2008).

Article 
PubMed 
CAS 

Google Scholar
Â