Anthony, M. A., Bender, S. F. & Van Der Heijden, M. G. A. Enumerating soil biodiversity. Proc. Natl Acad. Sci. USA 120, e2304663120 (2023).

Article 

Google Scholar
 

van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).

Article 

Google Scholar
 

Rosenberg, Y. et al. The global biomass and number of terrestrial arthropods. Sci. Adv. 9, eabq4049 (2023).

Article 

Google Scholar
 

Phillips, H. R. P. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).

Article 

Google Scholar
 

Cebrian, J. Role of first-order consumers in ecosystem carbon flow. Ecol. Lett. 7, 232–240 (2004).

Article 

Google Scholar
 

Wu, D., Du, E., Eisenhauer, N., Mathieu, J. & Chu, C. Global engineering effects of soil invertebrates on ecosystem functions. Nature 640, 120–129 (2025).

Article 

Google Scholar
 

Nielsen, U. N., Ayres, E., Wall, D. H. & Bardgett, R. D. Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity–function relationships. Eur. J. Soil Sci. 62, 105–116 (2011).

Article 

Google Scholar
 

Potapov, A. M., Lindo, Z., Buchkowski, R. & Geisen, S. Multiple dimensions of soil food-web research: history and prospects. Eur. J. Soil Biol. 117, 103494 (2023).

Article 

Google Scholar
 

Bates, S. T. et al. Examining the global distribution of dominant archaeal populations in soil. ISME J. 5, 908–917 (2011).

Article 

Google Scholar
 

Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).

Article 

Google Scholar
 

Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).

Article 

Google Scholar
 

Fickling, N. W. et al. Light–dark cycles may influence in situ soil bacterial networks and diurnally-sensitive taxa. Ecol. Evol. 14, e11018 (2024).

Article 

Google Scholar
 

Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).

Article 

Google Scholar
 

de Vries, F., Lau, J., Hawkes, C. & Semchenko, M. Plant–soil feedback under drought: does history shape the future? Trends Ecol. Evol. 38, 708–718 (2023).

Article 

Google Scholar
 

Beaumelle, L., De Laender, F. & Eisenhauer, N. Biodiversity mediates the effects of stressors but not nutrients on litter decomposition. eLife 9, e55659 (2020).

Article 

Google Scholar
 

Phillips, H. et al. Global change and their environmental stressors have a significant impact on soil biodiversity — a meta-analysis. iScience 27, 110540 (2024).

Article 

Google Scholar
 

Zhou, L. et al. Interactive effects of global change factors on soil respiration and its components: a meta-analysis. Glob. Change Biol. 22, 3157–3169 (2016).

Article 

Google Scholar
 

Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).

Article 

Google Scholar
 

Delgado-Baquerizo, M. et al. Soil biodiversity and function under global change. PLoS Biol. 23, e3003093 (2025).

Article 

Google Scholar
 

Fonte, S. J., Hsieh, M. & Mueller, N. D. Earthworms contribute significantly to global food production. Nat. Commun. 14, 5713 (2023).

Article 

Google Scholar
 

Sun, X. et al. Harnessing soil biodiversity to promote human health in cities. npj Urban Sustain. 3, 5 (2023).

Article 

Google Scholar
 

Angst, G. et al. Conceptualizing soil fauna effects on labile and stabilized soil organic matter. Nat. Commun. 15, 5005 (2024).

Article 

Google Scholar
 

Chen, S. et al. Plant diversity enhances productivity and soil carbon storage. Proc. Natl Acad. Sci. USA 115, 4027–4032 (2018).

Article 

Google Scholar
 

Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).

Article 

Google Scholar
 

Geisen, S. The future of (soil) microbiome studies: current limitations, integration, and perspectives. mSystems 6, e0061321 (2021).

Article 

Google Scholar
 

Geisen, S., Lara, E., Mitchell, E. A. D., Völcker, E. & Krashevska, V. Soil protist life matters! Soil Organisms 92, 189–196 (2020).


Google Scholar
 

Williamson, K. E., Fuhrmann, J. J., Wommack, K. E. & Radosevich, M. Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu. Rev. Virol. 4, 201–219 (2017).

Article 

Google Scholar
 

Bardgett, R. D. & Caruso, T. Soil microbial community responses to climate extremes: resistance, resilience and transitions to alternative states. Phil. Trans. R. Soc. B 375, 20190112 (2020).

Article 

Google Scholar
 

Eisenhauer, N. et al. The multidimensionality of soil macroecology. Glob. Ecol. Biogeogr. 30, 4–10 (2021).

Article 

Google Scholar
 

Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science 371, 239–241 (2021).

Article 

Google Scholar
 

Delgado-Baquerizo, M. et al. Changes in belowground biodiversity during ecosystem development. Proc. Natl Acad. Sci. USA 116, 6891–6896 (2019).

Article 

Google Scholar
 

Archidona-Yuste, A., Ciobanu, M., Kardol, P. & Eisenhauer, N. Divergent alpha and beta diversity trends of soil nematode fauna along gradients of environmental change in the Carpathian ecoregion. Commun. Biol. 8, 587 (2025).

Article 

Google Scholar
 

Pollierer, M. M. et al. Different patterns, but no temporal decline in temperate forest soil meso- and macrofauna over the last decade. Ecology 106, e70246 (2025).

Article 

Google Scholar
 

Caruso, T., Melecis, V., Kagainis, U. & Bolger, T. Population asynchrony alone does not explain stability in species-rich soil animal assemblages: the stabilizing role of forest age on oribatid mite communities. J. Anim. Ecol. 89, 1520–1531 (2020).

Article 

Google Scholar
 

Gonzalez, A. et al. Scaling-up biodiversity–ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).

Article 

Google Scholar
 

Li, Z. et al. Composition and metabolism of microbial communities in soil pores. Nat. Commun. 15, 3578 (2024).

Article 

Google Scholar
 

Cebrian, J. Patterns in the fate of production in plant communities. Am. Nat. 154, 449–468 (1999).

Article 

Google Scholar
 

Van Elsas, J. D. et al. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc. Natl Acad. Sci. USA 109, 1159–1164 (2012).

Article 

Google Scholar
 

Amyntas, A. et al. Shared community history strengthens plant diversity effects on belowground multitrophic functioning. J. Animal Ecol. 94, 555–565 (2023).

Article 

Google Scholar
 

Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).

Article 

Google Scholar
 

Decaëns, T. Macroecological patterns in soil communities: soil community macroecology. Glob. Ecol. Biogeog. 19, 287–302 (2010).

Article 

Google Scholar
 

Potapov, A. M. et al. Rainforest transformation reallocates energy from green to brown food webs. Nature 627, 116–122 (2024).

Article 

Google Scholar
 

Morriën, E. et al. Soil networks become more connected and take up more carbon as nature restoration progresses. Nat. Commun. 8, 14349 (2017).

Article 

Google Scholar
 

Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, eaav0550 (2019).

Article 

Google Scholar
 

Wu, Y. et al. Global patterns in mycorrhizal mediation of soil carbon storage, stability, and nitrogen demand: a meta-analysis. Soil Biol. Biochem. 166, 108578 (2022).

Article 

Google Scholar
 

Peddle, S. D. et al. Practical applications of soil microbiota to improve ecosystem restoration: current knowledge and future directions. Biol. Rev. Camb. Phil. Soc. 100, 1–18 (2025).

Article 

Google Scholar
 

Robinson, J. M., Liddicoat, C., Muñoz-Rojas, M. & Breed, M. F. Restoring soil biodiversity. Curr. Biol. 34, R393–R398 (2024).

Article 

Google Scholar
 

Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 11, 3870 (2020).

Article 

Google Scholar
 

Johnston, A. S. A. & Sibly, R. M. The influence of soil communities on the temperature sensitivity of soil respiration. Nat. Ecol. Evol. 2, 1597–1602 (2018).

Article 

Google Scholar
 

Seibold, S. et al. The contribution of insects to global forest deadwood decomposition. Nature 597, 77–81 (2021).

Article 

Google Scholar
 

Zanne, A. E. et al. Termite sensitivity to temperature affects global wood decay rates. Science 377, 1440–1444 (2022).

Article 

Google Scholar
 

Joly, F.-X. et al. Detritivore conversion of litter into faeces accelerates organic matter turnover. Commun. Biol. 3, 660 (2020).

Article 

Google Scholar
 

Tao, F. et al. Microbial carbon use efficiency promotes global soil carbon storage. Nature 618, 981–985 (2023).

Article 

Google Scholar
 

Heděnec, P. et al. Global distribution of soil fauna functional groups and their estimated litter consumption across biomes. Sci. Rep. 12, 17362 (2022).

Article 

Google Scholar
 

Barnes, A. D. et al. Energy flux: the link between multitrophic biodiversity and ecosystem functioning. Trends Ecol. Evol. 33, 186–197 (2018).

Article 

Google Scholar
 

Potapov, A. M. et al. Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. Biol. Rev. 97, 1057–1117 (2022).

Article 

Google Scholar
 

Pollierer, M. M. et al. Compound-specific isotope analysis of amino acids as a new tool to uncover trophic chains in soil food webs. Ecol. Monogr. 89, e01384 (2019).

Article 

Google Scholar
 

Manlick, P. J., Perryman, N. L., Koltz, A. M., Cook, J. A. & Newsome, S. D. Climate warming restructures food webs and carbon flow in high-latitude ecosystems. Nat. Clim. Change 14, 184–189 (2024).

Article 

Google Scholar
 

Jochum, M. & Eisenhauer, N. Out of the dark: using energy flux to connect above- and belowground communities and ecosystem functioning. Eur. J. Soil Sci. 73, e13154 (2021).

Article 

Google Scholar
 

Amyntas, A. et al. Soil community history strengthens belowground multitrophic functioning across plant diversity levels in a grassland experiment. Nat. Commun. 15, 10029 (2024).

Article 

Google Scholar
 

Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA 103, 626–631 (2006).

Article 

Google Scholar
 

Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).

Article 

Google Scholar
 

Delgado-Baquerizo, M. et al. Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe. N. Phytol. 219, 574–587 (2018).

Article 

Google Scholar
 

Cameron, E. K. et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 33, 1187–1192 (2019).

Article 

Google Scholar
 

Rillig, M. C. et al. Interchange of entire communities: microbial community coalescence. Trends Ecol. Evol. 30, 470–476 (2015).

Article 

Google Scholar
 

Guerra, C. A. et al. Global hotspots for soil nature conservation. Nature 610, 693–698 (2022).

Article 

Google Scholar
 

Eisenhauer, N. et al. A belowground perspective on the nexus between biodiversity change, climate change, and human well-being. J. Sust. Agricult. Environ. 3, e212108 (2024).

Article 

Google Scholar
 

Eisenhauer, N. et al. The heterogeneity–diversity–system performance nexus. Natl Sci. Rev. 10, nwad109 (2023).

Article 

Google Scholar
 

Bonato Asato, A. E., Wirth, C., Eisenhauer, N. & Hines, J. On the phenology of soil organisms: current knowledge and future steps. Ecol. Evol. 13, e10022 (2023).

Article 

Google Scholar
 

Broadbent, A. A. D. et al. Climate change disrupts the seasonal coupling of plant and soil microbial nutrient cycling in an alpine ecosystem. Glob. Change Biol. 30, e17245 (2024).

Article 

Google Scholar
 

Carini, P. et al. Effects of spatial variability and relic DNA removal on the detection of temporal dynamics in soil microbial communities. mBio 11, 10–1128 (2020).

Article 

Google Scholar
 

Gschwend, F. et al. Long-term stability of soil bacterial and fungal community structures revealed in their abundant and rare fractions. Mol. Ecol. 30, 4305–4320 (2021).

Article 

Google Scholar
 

Joos, L. et al. Year-long, multiple-timepoint field studies show the importance of spatiotemporal dynamics and microbial functions in agricultural soil microbiomes. mSystems 10, e0011225 (2025).

Article 

Google Scholar
 

Saltonstall, K., Van Breugel, M., Navia, W., Castillo, H. & Hall, J. S. Soil microbial communities in dry and moist tropical forests exhibit distinct shifts in community composition but not diversity with succession. Microbiol. Spectr. 13, e0193124 (2025).

Article 

Google Scholar
 

Sun, S., Li, S., Avera, B. N., Strahm, B. D. & Badgley, B. D. Soil bacterial and fungal communities show distinct recovery patterns during forest ecosystem restoration. Appl. Environ. Microbiol. 83, e00966-17 (2017).

Article 

Google Scholar
 

Louisson, Z. et al. Land use modification causes slow, but predictable, change in soil microbial community composition and functional potential. Environ. Microbiome 18, 30 (2023).

Article 

Google Scholar
 

Boyle, J. A., Murphy, B. K., Ensminger, I., Stinchcombe, J. R. & Frederickson, M. E. Resistance and resilience of soil microbiomes under climate change. Ecosphere 15, e70077 (2024).

Article 

Google Scholar
 

Radujković, D. et al. Prolonged exposure does not increase soil microbial community compositional response to warming along geothermal gradients. FEMS Microbiology Ecol. https://doi.org/10.1093/femsec/fix174 (2018).

Article 

Google Scholar
 

Cuartero, J., Querejeta, J. I., Prieto, I., Frey, B. & Alguacil, M. M. Warming and rainfall reduction alter soil microbial diversity and co-occurrence networks and enhance pathogenic fungi in dryland soils. Sci. Total Environ. 949, 175006 (2024).

Article 

Google Scholar
 

Deslippe, J. R., Hartmann, M., Simard, S. W. & Mohn, W. W. Long-term warming alters the composition of Arctic soil microbial communities. FEMS Microbiol. Ecol. 82, 303–315 (2012).

Article 

Google Scholar
 

Junggebauer, A. et al. Temporal variation of soil microarthropods in different forest types and regions of central Europe. Oikos 2024, e10513 (2024).

Article 

Google Scholar
 

Ganault, P. et al. Soil BON Earthworm — a global initiative on earthworm distribution, traits, and spatiotemporal diversity patterns. Soil Organisms https://doi.org/10.25674/362 (2024)

Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266–5270 (2014).

Article 

Google Scholar
 

Eisenhauer, N., Reich, P. B. & Isbell, F. Decomposer diversity and identity influence plant diversity effects on ecosystem functioning. Ecology 93, 2227–2240 (2012).

Article 

Google Scholar
 

de Vries, F. T. et al. Changes in root-exudate-induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling. N. Phytol. 224, 132–145 (2019).

Article 

Google Scholar
 

Bennett, A. E. & Groten, K. The costs and benefits of plant–arbuscular mycorrhizal fungal interactions. Annu. Rev. Plant. Biol. 73, 649–672 (2022).

Article 

Google Scholar
 

Sweeney, C. J., de Vries, F. T., van Dongen, B. E. & Bardgett, R. D. Root traits explain rhizosphere fungal community composition among temperate grassland plant species. N. Phytol. 229, 1492–1507 (2021).

Article 

Google Scholar
 

Trivedi, P., Batista, B. D., Bazany, K. E. & Singh, B. K. Plant–microbiome interactions under a changing world: responses, consequences and perspectives. N. Phytol. 234, 1951–1959 (2022).

Article 

Google Scholar
 

Laliberté, E. Below-ground frontiers in trait-based plant ecology. N. Phytol. 213, 1597–1603 (2017).

Article 

Google Scholar
 

Eisenhauer, N. & Powell, J. R. Plant trait effects on soil organisms and functions. Pedobiologia 65, 1–4 (2017).

Article 

Google Scholar
 

Bergmann, J. et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, eaba3756 (2020).

Article 

Google Scholar
 

Bennett, J. A. & Klironomos, J. Mechanisms of plant–soil feedback: interactions among biotic and abiotic drivers. N. Phytol. 222, 91–96 (2019).

Article 

Google Scholar
 

De Deyn, G. B. & Kooistra, L. The role of soils in habitat creation, maintenance and restoration. Phil. Trans. R. Soc. B 376, 20200170 (2021).

Article 

Google Scholar
 

Kaisermann, A., De Vries, F. T., Griffiths, R. I. & Bardgett, R. D. Legacy effects of drought on plant–soil feedbacks and plant–plant interactions. N. Phytol. 215, 1413–1424 (2017).

Article 

Google Scholar
 

Davis, A. G., Huggins, D. R. & Reganold, J. P. Linking soil health and ecological resilience to achieve agricultural sustainability. Front. Ecol. Environ. 21, 131–139 (2023).

Article 

Google Scholar
 

Davis, J. K., Aguirre, L. A., Barber, N. A., Stevenson, P. C. & Adler, L. S. From plant fungi to bee parasites: mycorrhizae and soil nutrients shape floral chemistry and bee pathogens. Ecology 100, e02801 (2019).

Article 

Google Scholar
 

Magalhaes, D. M., Lourenção, A. L. & Bento, J. M. S. Beneath the blooms: unearthing the effect of rhizospheric bacteria on floral signals and pollinator preferences. Plant Cell Environ. 47, 782–798 (2024).

Article 

Google Scholar
 

Barber, N. A. & Soper Gorden, N. L. How do belowground organisms influence plant–pollinator interactions? J. Plant. Ecol. 8, 1–11 (2015).

Article 

Google Scholar
 

Keeler, A. M., Rose-Person, A. & Rafferty, N. E. From the ground up: building predictions for how climate change will affect belowground mutualisms, floral traits, and bee behavior. Clim. Change Ecol. 1, 100013 (2021).

Article 

Google Scholar
 

Andras, J. P. et al. Rewilding the small stuff: the effect of ecological restoration on prokaryotic communities of peatland soils. FEMS Microbiol. Ecol. 96, fiaa144 (2020).

Article 

Google Scholar
 

Lem, A. J. et al. Does revegetation cause soil microbiota recovery? Evidence from revisiting a revegetation chronosequence 6 years after initial sampling. Restor. Ecol. 30, e13635 (2022).

Article 

Google Scholar
 

Stewart, J., de Lima, N. M., Kingsford, R. & Muñoz-Rojas, M. Soil bacterial biodiversity in drylands is dependent on groundcover under increased temperature. J. Sustain. Agricult. Environ. 3, e70027 (2024).

Article 

Google Scholar
 

Wu, L. et al. Reduction of microbial diversity in grassland soil is driven by long-term climate warming. Nat. Microbiol. 7, 1054–1062 (2022).

Article 

Google Scholar
 

Ye, C. et al. Revegetation promotes soil microbial network stability in a novel riparian ecosystem. J. Appl. Ecol. 60, 1572–1586 (2023).

Article 

Google Scholar
 

Tedersoo, L., May, T. W. & Smith, M. E. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20, 217–263 (2010).

Article 

Google Scholar
 

Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis (Academic Press, 2010).

Nuñez, M. A., Horton, T. R. & Simberloff, D. Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90, 2352–2359 (2009).

Article 

Google Scholar
 

Carteron, A., Vellend, M. & Laliberté, E. Mycorrhizal dominance reduces local tree species diversity across US forests. Nat. Ecol. Evol. 6, 370–374 (2022).

Article 

Google Scholar
 

Luo, S. et al. Higher productivity in forests with mixed mycorrhizal strategies. Nat. Commun. 14, 1377 (2023).

Article 

Google Scholar
 

Mathieu, J., Reynolds, J. W., Fragoso, C. & Hadly, E. Multiple invasion routes have led to the pervasive introduction of earthworms in North America. Nat. Ecol. Evol. 8, 489–499 (2024).

Article 

Google Scholar
 

Ferlian, O. et al. Invasive earthworms shift soil microbial community structure in northern North American forest ecosystems. iScience 27, 108889 (2024).

Article 

Google Scholar
 

Thouvenot, L. et al. Invasive earthworms can change understory plant community traits and reduce plant functional diversity. iScience 27, 109036 (2024).

Article 

Google Scholar
 

Thouvenot, L., Ferlian, O., Horn, L., Jochum, M. & Eisenhauer, N. Effects of earthworm invasion on soil properties and plant diversity after two years of field experiment. NeoBiota 94, 31–56 (2024).

Article 

Google Scholar
 

Jochum, M. et al. Earthworm invasion causes declines across soil fauna size classes and biodiversity facets in northern North American forests. Oikos 130, 766–780 (2021).

Article 

Google Scholar
 

Scheu, S. The soil food web: structure and perspectives. Eur. J. Soil Biol. 38, 11–20 (2002).

Article 

Google Scholar
 

Prosser, J. I. Dispersing misconceptions and identifying opportunities for the use of ’omics in soil microbial ecology. Nat. Rev. Microbiol. 13, 439–446 (2015).

Article 

Google Scholar
 

Semenov, M. Metabarcoding and metagenomics in soil ecology research: achievements, challenges, and prospects. Biol. Bull. Rev. 11, 40–53 (2021).

Article 

Google Scholar
 

Mishra, A., Singh, L. & Singh, D. Unboxing the black box — one step forward to understand the soil microbiome: a systematic review. Microb. Ecol. 85, 669–683 (2023).

Article 

Google Scholar
 

Bastida, F. et al. Climatic vulnerabilities and ecological preferences of soil invertebrates across biomes. Mol. Ecol. 29, 752–761 (2020).

Article 

Google Scholar
 

Geisen, S. & Bonkowski, M. Methodological advances to study the diversity of soil protists and their functioning in soil food webs. Appl. Soil Ecol. 123, 328–333 (2018).

Article 

Google Scholar
 

Porter, T. M. et al. Variations in terrestrial arthropod DNA metabarcoding methods recovers robust beta diversity but variable richness and site indicators. Sci. Rep. 9, 18218 (2019).

Article 

Google Scholar
 

Young, M. R. & Hebert, P. D. Unearthing soil arthropod diversity through DNA metabarcoding. PeerJ 10, e12845 (2022).

Article 

Google Scholar
 

Kirse, A., Bourlat, S. J., Langen, K. & Fonseca, V. G. Unearthing the potential of soil eDNA metabarcoding — towards best practice advice for invertebrate biodiversity assessment. Front. Ecol. Evol. 9, 630560 (2021).

Article 

Google Scholar
 

Oliverio, A. M., Gan, H., Wickings, K. & Fierer, N. A DNA metabarcoding approach to characterize soil arthropod communities. Soil Biol. Biochem. 125, 37–43 (2018).

Article 

Google Scholar
 

Zinger, L. et al. Extracellular DNA extraction is a fast, cheap and reliable alternative for multi-taxa surveys based on soil DNA. Soil Biol. Biochem. 96, 16–19 (2016).

Article 

Google Scholar
 

Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 39, 499–509 (2021).

Article 

Google Scholar
 

Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).

Article 

Google Scholar
 

Coyotzi, S., Pratscher, J., Murrell, J. C. & Neufeld, J. D. Targeted metagenomics of active microbial populations with stable-isotope probing. Curr. Opin. Biotechnol. 41, 1–8 (2016).

Article 

Google Scholar
 

Macey, M. C. Genome-resolved metagenomics identifies novel active microbes in biogeochemical cycling within methanol-enriched soil. Environ. Microbiol. Rep. 16, e13246 (2024).

Article 

Google Scholar
 

Ivanova, E., Suleymanov, A., Nikitin, D., Semenov, M. & Abakumov, E. Machine learning-based mapping of acidobacteriota and planctomycetota using 16 S rRNA gene metabarcoding data across soils in Russia. Sci. Rep. 15, 23763 (2025).

Article 

Google Scholar
 

Thompson, J., Johansen, R., Dunbar, J. & Munsky, B. Machine learning to predict microbial community functions: an analysis of dissolved organic carbon from litter decomposition. PLoS ONE 14, e0215502 (2019).

Article 

Google Scholar
 

Pyron, R. A. Unsupervised machine learning for species delimitation, integrative taxonomy, and biodiversity conservation. Mol. Phylogenet. Evol. 189, 107939 (2023).

Article 

Google Scholar
 

Edwin, N. R., Fitzpatrick, A. H., Brennan, F., Abram, F. & O’Sullivan, O. An in-depth evaluation of metagenomic classifiers for soil microbiomes. Environ. Microbiome 19, 19 (2024).

Article 

Google Scholar
 

Geisen, S., Wall, D. H. & van der Putten, W. H. Challenges and opportunities for soil biodiversity in the Anthropocene. Curr. Biol. 29, R1036–R1044 (2019).

Article 

Google Scholar
 

Parks, D. H. et al. A complete domain-to-species taxonomy for bacteria and Archaea. Nat. Biotechnol. 38, 1079–1086 (2020).

Article 

Google Scholar
 

Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics 38, 5315–5316 (2022).

Article 

Google Scholar
 

Barbera, P. et al. EPA-ng: massively parallel evolutionary placement of genetic sequences. Syst. Biol. 68, 365–369 (2019).

Article 

Google Scholar
 

Pereira, M. B., Wallroth, M., Jonsson, V. & Kristiansson, E. Comparison of normalization methods for the analysis of metagenomic gene abundance data. BMC Genom. 19, 274 (2018).

Article 

Google Scholar
 

Vyshenska, D. et al. A standardized quantitative analysis strategy for stable isotope probing metagenomics. mSystems 8, e01280-22 (2023).

Article 

Google Scholar
 

Wang, S. et al. Unveiling the top-down control of soil viruses over microbial communities and soil organic carbon cycling: a review. Clim. Smart Agricult. 1, 100022 (2024).

Article 

Google Scholar
 

Ahkami, A. H. et al. Emerging sensing, imaging, and computational technologies to scale nano-to macroscale rhizosphere dynamics — review and research perspectives. Soil Biol. Biochem. 189, 109253 (2024).

Article 

Google Scholar
 

Belaud, E. et al. In situ soil imaging, a tool for monitoring the hourly to monthly temporal dynamics of soil biota. Biol. Fertil. Soils 60, 1055–1071 (2024).

Article 

Google Scholar
 

Nishida, H., Shimoda, Y., Win, K. T. & Imaizumi-Anraku, H. Rhizosphere frame system enables nondestructive live-imaging of legume–rhizobium interactions in the soil. J. Plant Res. 136, 769–780 (2023).

Article 

Google Scholar
 

Aleklett, K. et al. Build your own soil: exploring microfluidics to create microbial habitat structures. ISME J. 12, 312–319 (2018).

Article 

Google Scholar
 

Mafla-Endara, P. M. et al. Microfluidic chips provide visual access to in situ soil ecology. Commun. Biol. 4, 889 (2021).

Article 

Google Scholar
 

Langel, R. & Dyckmans, J. Combined 13C and 15N isotope analysis on small samples using a near-conventional elemental analyzer/isotope ratio mass spectrometer setup. Rapid Commun. Mass. Spectrom. 28, 1019–1022 (2014).

Article 

Google Scholar
 

Melody, C., Griffiths, B., Dyckmans, J. & Schmidt, O. Stable isotope analysis (δ13C and δ15N) of soil nematodes from four feeding groups. PeerJ 4, e2372 (2016).

Article 

Google Scholar
 

Zeng, Q., Mei, T., Delgado-Baquerizo, M., Wang, M. & Tan, W. Suppressed phosphorus-mineralizing bacteria after three decades of fertilization. Agricult. Ecosyst. Environ. 323, 107679 (2022).

Article 

Google Scholar
 

Kühn, J., Schweitzer, K. & Ruess, L. Diversity and specificity of lipid patterns in basal soil food web resources. PLoS ONE 14, e0221102 (2019).

Article 

Google Scholar
 

Whiteman, J. P., Elliott Smith, E. A., Besser, A. C. & Newsome, S. D. A guide to using compound-specific stable isotope analysis to study the fates of molecules in organisms and ecosystems. Diversity 11, 8 (2019).

Article 

Google Scholar
 

Steffan, S. A. et al. Microbes are trophic analogs of animals. Proc. Natl Acad. Sci. USA 112, 15119–15124 (2015).

Article 

Google Scholar
 

Steffan, S. A. & Dharampal, P. S. Undead food-webs: integrating microbes into the food-chain. Food Webs 18, e00111 (2019).

Article 

Google Scholar
 

Land use, land-use change, and forestry: a special report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change https://www.ipcc.ch/report/land-use-land-use-change-and-forestry/ (2000).

Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. 114, 9575–9580 (2017).

Article 

Google Scholar
 

Zhou, T. et al. Promoting effect of plant diversity on soil microbial functionality is amplified over time. One Earth 7, 2139–2148 (2024).

Article 

Google Scholar
 

Phillips, H. R. P. et al. Global changes and their environmental stressors have a significant impact on soil biodiversity — a meta-analysis. iScience 27, 110540 (2024).

Article 

Google Scholar
 

Lüke, C. & Frenzel, P. Potential of pmoA amplicon pyrosequencing for methanotroph diversity studies. Appl. Environ. Microbiol. 77, 6305–6309 (2011).

Article 

Google Scholar
 

Purkhold, U. et al. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl. Environ. Microbiol. 66, 5368–5382 (2000).

Article 

Google Scholar
 

Van Spanning, R. J. et al. Methanotrophy by a Mycobacterium species that dominates a cave microbial ecosystem. Nat. Microbiol. 7, 2089–2100 (2022).

Article 

Google Scholar
 

Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. Data Discuss. 12, 1561–1623 (2020).

Article 

Google Scholar
 

Schroth, M. H. et al. Above-and below-ground methane fluxes and methanotrophic activity in a landfill-cover soil. Waste Manag. 32, 879–889 (2012).

Article 

Google Scholar
 

Schnyder, E., Bodelier, P. L., Hartmann, M., Henneberger, R. & Niklaus, P. A. Positive diversity–functioning relationships in model communities of methanotrophic bacteria. Ecology 99, 714–723 (2018).

Article 

Google Scholar
 

Schnyder, E., Bodelier, P. L., Hartmann, M., Henneberger, R. & Niklaus, P. A. Experimental erosion of microbial diversity decreases soil CH4 consumption rates. Ecology 104, e4178 (2023).

Article 

Google Scholar
 

Schnyder, E., Bodelier, P. L., Hartmann, M., Henneberger, R. & Niklaus, P. A. Do temporal and spatial heterogeneity modulate biodiversity–functioning relationships in communities of methanotrophic bacteria? Soil Biol. Biochem. 185, 109141 (2023).

Article 

Google Scholar
 

Jiang, O. et al. Loss of microbial diversity increases methane emissions and arsenic release in paddy soils. Sci. Total Environ. 948, 174656 (2024).

Article 

Google Scholar
 

Yang, X. et al. Loss of microbial diversity does not decrease γ-HCH degradation but increases methanogenesis in flooded paddy soil. Soil Biol. Biochem. 156, 108210 (2021).

Article 

Google Scholar
 

Kool, D. M., Dolfing, J., Wrage, N. & Van Groenigen, J. W. Nitrifier denitrification as a distinct and significant source of nitrous oxide from soil. Soil Biol. Biochem. 43, 174–178 (2011).

Article 

Google Scholar
 

Li, X., Sørensen, P., Olesen, J. E. & Petersen, S. O. Evidence for denitrification as main source of N2O emission from residue-amended soil. Soil Biol. Biochem. 92, 153–160 (2016).

Article 

Google Scholar
 

Mathieu, O. et al. Quantifying the contribution of nitrification and denitrification to the nitrous oxide flux using 15N tracers. Environ. Pollut. 144, 933–940 (2006).

Article 

Google Scholar
 

Shan, J. et al. Beyond denitrification: the role of microbial diversity in controlling nitrous oxide reduction and soil nitrous oxide emissions. Glob. Change Biol. 27, 2669–2683 (2021).

Article 

Google Scholar
 

Wu, B. et al. Synthetic denitrifying communities reveal a positive and dynamic biodiversity–ecosystem functioning relationship during experimental evolution. Microbiol. Spectr. 11, e04528-22 (2023).

Article 

Google Scholar
 

Griffiths, B. S. & Philippot, L. Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol. Rev. 37, 112–129 (2013).

Article 

Google Scholar
 

Domeignoz-Horta, L. A. et al. Microbial diversity drives carbon use efficiency in a model soil. Nat. Commun. 11, 3684 (2020).

Article 

Google Scholar
 

Thakur, M. P. et al. Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors. Glob. Change Biol. 21, 4076–4085 (2015).

Article 

Google Scholar
 

Lange, M. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 6707 (2015).

Article 

Google Scholar
 

Eisenhauer, N. et al. Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. Proc. Natl Acad. Sci. USA 110, 6889–6894 (2013).

Article 

Google Scholar
 

Xu, S. et al. Species richness promotes ecosystem carbon storage: evidence from biodiversity–ecosystem functioning experiments. Proc. R. Soc. B 287, 20202063 (2020).

Article 

Google Scholar
 

Thurner, M. A., Caldararu, S., Engel, J., Rammig, A. & Zaehle, S. Modelled forest ecosystem carbon–nitrogen dynamics with integrated mycorrhizal processes under elevated CO2. Biogeosciences 21, 1391–1410 (2024).

Article 

Google Scholar
 

Pavao-Zuckerman, M. A. The nature of urban soils and their role in ecological restoration in cities. Restor. Ecol. 16, 642–649 (2008).

Article 

Google Scholar
 

Delgado-Baquerizo, M. et al. Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Sci. Adv. 7, eabg5809 (2021).

Article 

Google Scholar
 

Fenoglio, M. S., Rossetti, M. R. & Videla, M. Negative effects of urbanization on terrestrial arthropod communities: a meta-analysis. Glob. Ecol. Biogeogr. 29, 1412–1429 (2020).

Article 

Google Scholar
 

Szabó, B. et al. Urbanization decreases species richness, and increases abundance in dry climates whereas decreases in wet climates: a global meta-analysis. Sci. Total Environ. 859, 160145 (2023).

Article 

Google Scholar
 

Epp Schmidt, D. J. et al. Urbanization erodes ectomycorrhizal fungal diversity and may cause microbial communities to converge. Nat. Ecol. Evol. 1, 0123 (2017).

Article 

Google Scholar
 

Zhang, Y. et al. Increasing antimicrobial resistance and potential human bacterial pathogens in an invasive land snail driven by urbanization. Environ. Sci. Technol. 57, 7273–7284 (2023).

Article 

Google Scholar
 

Guilland, C., Maron, P.-A., Damas, O. & Ranjard, L. Biodiversity of urban soils for sustainable cities. Environ. Chem. Lett. 16, 1267–1282 (2018).

Article 

Google Scholar
 

Shankar, M. et al. Unearthing the role of soils in urban climate resilience planning. Nat. Sustain. 7, 1374–1376 (2024).

Article 

Google Scholar
 

Scherzinger, F. et al. Sustainable land management enhances ecological and economic multifunctionality under ambient and future climate. Nat. Commun. 15, 4930 (2024).

Article 

Google Scholar
 

Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31, 440–452 (2016).

Article 

Google Scholar
 

Nielsen, U. N., Wall, D. H. & Six, J. Soil biodiversity and the environment. Annu. Rev. Environ. Resour. 40, 63–90 (2015).

Article 

Google Scholar
 

Wall, D. H. et al. Soil Ecology and Ecosystem Services (Oxford Univ. Press, 2012).

Wu, H. et al. Unveiling the crucial role of soil microorganisms in carbon cycling: a review. Sci. Total Environ. 909, 168627 (2024).

Article 

Google Scholar
 

Chaudhary, S., Sindhu, S. S., Dhanker, R. & Kumari, A. Microbes-mediated sulphur cycling in soil: impact on soil fertility, crop production and environmental sustainability. Microbiol. Res. 271, 127340 (2023).

Article 

Google Scholar
 

Naitam, M. G. & Kaushik, R. Archaea: an agro-ecological perspective. Curr. Microbiol 78, 2510–2521 (2021).

Article 

Google Scholar
 

Ferris, H. Contribution of nematodes to the structure and function of the soil food web. J. Nematol. 42, 63–67 (2010).


Google Scholar
 

Jansson, J. K. & Wu, R. Soil viral diversity, ecology and climate change. Nat. Rev. Microbiol. 21, 296–311 (2023).

Article 

Google Scholar
 

Liang, X. et al. Studying soil viral ecology under an ecosystem services framework. Appl. Soil Ecol. 197, 105339 (2024).

Article 

Google Scholar
 

Liang, X. et al. Incorporating viruses into soil ecology: a new dimension to understand biogeochemical cycling. Crit. Rev. Environ. Sci. Technol. 54, 117–137 (2024).

Article 

Google Scholar
 

Lehmann, J., Bossio, D. A., Kögel-Knabner, I. & Rillig, M. C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 1, 544–553 (2020).

Article 

Google Scholar
 

Byrnes, J. E. K. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124 (2014).

Article 

Google Scholar
 

Romero, F. et al. Soil health is associated with higher primary productivity across Europe. Nat. Ecol. Evol. 8, 1847–1855 (2024).

Article 

Google Scholar
 

Eisenhauer, N., Hines, J., Maestre, F. T. & Rillig, M. C. Reconsidering functional redundancy in biodiversity research. npj Biodivers. 2, 9 (2023).

Article 

Google Scholar
 

Ebrahimi, A. & Or, D. Hydration and diffusion processes shape microbial community organization and function in model soil aggregates. Water Resour. Res. 51, 9804–9827 (2015).

Article 

Google Scholar
 

Labouyrie, M. et al. Patterns in soil microbial diversity across Europe. Nat. Commun. 14, 3311 (2023).

Article 

Google Scholar
 

Fan, K. et al. Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome 7, 143 (2019).

Article 

Google Scholar
 

Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528, 69–76 (2015).

Article 

Google Scholar
 

Delgado-Baquerizo, M. et al. The proportion of soil-borne pathogens increases with warming at the global scale. Nat. Clim. Change 10, 550–554 (2020).

Article 

Google Scholar
 

Sünnemann, M. et al. Climate change and cropland management compromise soil integrity and multifunctionality. Commun. Earth Environ. 4, 394 (2023).

Article 

Google Scholar
 

Rillig, M. C. et al. Increasing the number of stressors reduces soil ecosystem services worldwide. Nat. Clim. Change 13, 478–483 (2023).

Article 

Google Scholar
 

Thakur, M. P. et al. Reduced feeding activity of soil detritivores under warmer and drier conditions. Nat. Clim. Change 8, 75–78 (2018).

Article 

Google Scholar
 

Jurburg, S. D., Blowes, S. A., Shade, A., Eisenhauer, N. & Chase, J. M. Synthesis of recovery patterns in microbial communities across environments. Microbiome 12, 79 (2024).

Article 

Google Scholar
 

Chomel, M. et al. Intensive grassland management disrupts below-ground multi-trophic resource transfer in response to drought. Nat. Commun. 13, 6991 (2022).

Article 

Google Scholar
 

Siebert, J. et al. The effects of drought and nutrient addition on soil organisms vary across taxonomic groups, but are constant across seasons. Sci. Rep. 9, 639 (2019).

Article 

Google Scholar
 

Schmidt, A. et al. The iDiv Ecotron — a flexible research platform for multitrophic biodiversity research. Ecol. Evol. 11, 15174–15190 (2021).

Article 

Google Scholar
 

Yang, G. et al. Multiple anthropogenic pressures eliminate the effects of soil microbial diversity on ecosystem functions in experimental microcosms. Nat. Commun. 13, 4260 (2022).

Article 

Google Scholar
 

Dainese, M. et al. Global change experiments in mountain ecosystems: a systematic review. Ecol. Monogr. 94, e1632 (2024).

Article 

Google Scholar
 

Schädler, M. et al. Investigating the consequences of climate change under different land-use regimes: a novel experimental infrastructure. Ecosphere 10, e02635 (2019).

Article 

Google Scholar
 

Weisser, W. W. et al. Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: patterns, mechanisms, and open questions. Basic Appl. Ecol. 23, 1–73 (2017).

Article 

Google Scholar
 

Mason, E. et al. Participatory soil citizen science: an unexploited resource for European soil research. Eur. J. Soil Sci. 75, e13470 (2024).

Article 

Google Scholar
 

Hu, W. et al. Aridity-driven shift in biodiversity–soil multifunctionality relationships. Nat. Commun. 12, 5350 (2021).

Article 

Google Scholar
 

Grover, V. I., Borsdorf, A., Breuste, J., Tiwari, P. C. & Frangetto, F. W. Impact of Global Changes on Mountains: Responses and Adaptation (CRC Press, 2014).

Mountain Research Initiative EDW Working Group. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).

Article 

Google Scholar
 

König, T., Kaufmann, R. & Scheu, S. The formation of terrestrial food webs in glacier foreland: evidence for the pivotal role of decomposer prey and intraguild predation. Pedobiologia 54, 147–152 (2011).

Article 

Google Scholar
 

Raso, L. et al. Intraguild predation in pioneer predator communities of alpine glacier forelands. Mol. Ecol. 23, 3744–3754 (2014).

Article 

Google Scholar
 

Steinwandter, M., Rief, A., Scheu, S., Traugott, M. & Seeber, J. Structural and functional characteristics of high alpine soil macro-invertebrate communities. Eur. J. Soil Biol. 86, 72–80 (2018).

Article 

Google Scholar
 

Hou, W. et al. Functional traits of soil nematodes define their response to nitrogen fertilization. Funct. Ecol. 37, 1197–1210 (2023).

Article 

Google Scholar
 

Walker, T. W. et al. Lowland plant arrival in alpine ecosystems facilitates a decrease in soil carbon content under experimental climate warming. eLife 11, e78555 (2022).

Article 

Google Scholar
 

Heemsbergen, D. A. et al. Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306, 1019–1020 (2004).

Article 

Google Scholar
 

Eisenhauer, N., Cesarz, S., Koller, R., Worm, K. & Reich, P. B. Global change belowground: impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. Glob. Change Biol. 18, 435–447 (2012).

Article 

Google Scholar
 

Forey, O. et al. Earthworms do not increase greenhouse gas emissions (CO2 and N2O) in an Ecotron experiment simulating a three-crop rotation system. Sci. Rep. 13, 21920 (2023).

Article 

Google Scholar
 

Sauze, J. et al. The need for realistic experimental setups in controlled environments: insights from a two-year Ecotron experiment on earthworms’ impact on ecosystem H2O, CO2 and N2O dynamics. In EGU General Assembly 2024 (ed. European Geosciences Union (EGU) Scientific Programme Committee) EGU24-9685 (Göttingen Copernicus, 2024).

Roy, J. et al. Ecotrons: powerful and versatile ecosystem analysers for ecology, agronomy and environmental science. Glob. Change Biol. 27, 1387–1407 (2021).

Article 

Google Scholar
 

Eisenhauer, N. et al. Ecosystem consequences of invertebrate decline. Curr. Biol. 33, 4538–4547.e5 (2023).

Article 

Google Scholar
 

Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).

Article 

Google Scholar
 

Leff, J. W. et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl Acad. Sci. USA 112, 10967–10972 (2015).

Article 

Google Scholar
 

Jin, S. & Chang, H. The trends of blockchain in environmental management research: a bibliometric analysis. Environ. Sci. Pollut. Res. 30, 81707–81724 (2023).

Article 

Google Scholar
 

Liu, X., Barenji, A. V., Li, Z., Montreuil, B. & Huang, G. Q. Blockchain-based smart tracking and tracing platform for drug supply chain. Computers Ind. Eng. 161, 107669 (2021).

Article 

Google Scholar
 

Singh, B. K., Trivedi, P., Egidi, E., Macdonald, C. A. & Delgado-Baquerizo, M. Crop microbiome and sustainable agriculture. Nat. Rev. Microbiol. 18, 601–602 (2020).

Article 

Google Scholar
 

Russell, D. J. et al. Edaphobase 2.0: advanced international data warehouse for collating and using soil biodiversity datasets. Appl. Soil Ecol. 204, 105710 (2024).

Article 

Google Scholar
 

Pey, B. et al. Current use of and future needs for soil invertebrate functional traits in community ecology. Basic Appl. Ecol. 15, 194–206 (2014).

Article 

Google Scholar
 

Pey, B. et al. A thesaurus for soil invertebrate trait-based approaches. PLoS ONE 9, e108985 (2014).

Article 

Google Scholar
 

Lavelle, P. et al. Soil macroinvertebrate communities: a world-wide assessment. Glob. Ecol. Biogeogr. 31, 1261–1276 (2022).

Article 

Google Scholar
 

Mathieu, J. et al. sOilFauna — a global synthesis effort on the drivers of soil macrofauna communities and functioning. Soil Organisms 94, 111–126 (2022).


Google Scholar
 

Sarneel, J. M. et al. Reading tea leaves worldwide: decoupled drivers of initial litter decomposition mass-loss rate and stabilization. Ecol. Lett. 27, e14415 (2024).

Article 

Google Scholar
 

Maestre, F. T. & Eisenhauer, N. Recommendations for establishing global collaborative networks in soil ecology. Soil Org. 91, 73 (2019).


Google Scholar
 

Burton, V. J. et al. Land use and soil characteristics affect soil organisms differently from above-ground assemblages. BMC Ecol. Evol. 22, 135 (2022).

Article 

Google Scholar
 

Fischer, M. et al. Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl. Ecol. 11, 473–485 (2010).

Article 

Google Scholar
 

Robinson, J. M., Taylor, A., Fickling, N., Sun, X. & Breed, M. F. Sounds of the underground reflect soil biodiversity dynamics across a grassy woodland restoration chronosequence. J. Appl. Ecol. 61, 2047–2060 (2024).

Article 

Google Scholar
 

Thakur, M. P. et al. Towards an integrative understanding of soil biodiversity. Biol. Rev. 95, 350–364 (2020).

Article 

Google Scholar
 

Chu, H., Gao, G.-F., Ma, Y., Fan, K. & Delgado-Baquerizo, M. Soil microbial biogeography in a changing world: recent advances and future perspectives. mSystems 5, e00803–e00819 (2020).

Article 

Google Scholar
 

Li, W., Zhang, Y., Mao, W., Wang, C. & Yin, S. Functional potential differences between firmicutes and proteobacteria in response to manure amendment in a reclaimed soil. Can. J. Microbiol. 66, 689–697 (2020).

Article 

Google Scholar
 

Dawson, W. & Schrama, M. Identifying the role of soil microbes in plant invasions. J. Ecol. 104, 1211–1218 (2016).

Article 

Google Scholar
 

Torres, N., Herrera, I., Fajardo, L. & Bustamante, R. O. Meta-analysis of the impact of plant invasions on soil microbial communities. BMC Ecol. Evol. 21, 172 (2021).

Article 

Google Scholar
 

Waldner, T. & Traugott, M. DNA-based analysis of regurgitates: a noninvasive approach to examine the diet of invertebrate consumers. Mol. Ecol. Resour. 12, 669–675 (2012).

Article 

Google Scholar
 

Buchkowski, R. W. & Lindo, Z. Stoichiometric and structural uncertainty in soil food web models. Funct. Ecol. 35, 288–300 (2021).

Article 

Google Scholar
 

Gauzens, B. et al. fluxweb: an R package to easily estimate energy fluxes in food webs. Meth. Ecol. Evol. 10, 270–279 (2018).

Article 

Google Scholar
 

Sünnemann, M. et al. Sustainable land use strengthens microbial and herbivore controls in soil food webs in current and future climates. Glob. Change Biol. 30, e17554 (2024).

Article 

Google Scholar
 

Potapov, A. M., Pollierer, M. M., Salmon, S., Šustr, V. & Chen, T. Multidimensional trophic niche revealed by complementary approaches: gut content, digestive enzymes, fatty acids and stable isotopes in collembola. J. Anim. Ecol. 90, 1919–1933 (2021).

Article 

Google Scholar
 

Tecon, R. & Or, D. Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiol. Rev. 41, 599–623 (2017).

Article 

Google Scholar
 

Erktan, A., Or, D. & Scheu, S. The physical structure of soil: determinant and consequence of trophic interactions. Soil Biol. Biochem. 148, 107876 (2020).

Article 

Google Scholar
 

Baveye, P. C. Ecosystem-scale modelling of soil carbon dynamics: time for a radical shift of perspective? Soil Biol. Biochem. 184, 109112 (2023).

Article 

Google Scholar
 

Védère, C., Gonod, L. V., Nunan, N. & Chenu, C. Opportunities and limits in imaging microorganisms and their activities in soil microhabitats. Soil Biol. Biochem. 174, 108807 (2022).

Article 

Google Scholar
 

Capowiez, Y., Gilbert, F., Vallat, A., Poggiale, J.-C. & Bonzom, J.-M. Depth distribution of soil organic matter and burrowing activity of earthworms— mesocosm study using X-ray tomography and luminophores. Biol. Fertil. Soils 57, 337–346 (2021).

Article 

Google Scholar
 

Capowiez, Y., Bonzom, J.-M., Bottinelli, N. & Gilbert, F. The burrowing and casting dynamics of earthworms are influenced by litter presence as evidenced by repeated scans and a new marker of bioturbation. Appl. Soil Ecol. 202, 105569 (2024).

Article 

Google Scholar
 

Heintz-Buschart, A. et al. Microbial diversity–ecosystem function relationships across environmental gradients. Res. Ideas Outcomes 6, e52217 (2020).

Article 

Google Scholar
 

Orgiazzi, A. et al. LUCAS soil biodiversity and LUCAS soil pesticides, new tools for research and policy development. Eur. J. Soil Sci. 73, e13299 (2022).

Article 

Google Scholar
 

van der Putten, W. H. et al. Soil biodiversity needs policy without borders. Science 379, 32–34 (2023).

Article 

Google Scholar
 

Beugnon, R., Zeiss, R., Bönisch, E., Phillips, H. & Jochum, M. Communicating soil biodiversity research to kids around the world. Soil Org. 96, 61–68 (2024).


Google Scholar
 

Guerra, C. A. et al. Foundations for a national assessment of soil biodiversity. J. Sustain. Agricult. Environ. 3, e12116 (2024).

Article 

Google Scholar
 

Wirth, C. et al. Faktencheck Artenvielfalt: Bestandsaufnahme Und Perspektiven Für Den Erhalt Der Biologischen Vielfalt in Deutschland (Oekom Science, 2024).

Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).

Article 

Google Scholar
 

Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl Acad. Sci. USA 100, 12765–12770 (2003).

Article 

Google Scholar
 

Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).

Article 

Google Scholar
 

Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).

Article 

Google Scholar
 

Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).

Article 

Google Scholar
 

Craven, D. et al. A cross-scale assessment of productivity–diversity relationships. Glob. Ecol. Biogeogr. 29, 1940–1955 (2020).

Article 

Google Scholar
 

Müller, J. et al. Enhancing the structural diversity between forest patches — a concept and real-world experiment to study biodiversity, multifunctionality and forest resilience across spatial scales. Glob. Change Biol. 29, 1437–1450 (2023).

Article 

Google Scholar
 

Eisenhauer, N. et al. A multitrophic perspective on biodiversity–ecosystem functioning research. Adv. Ecol. Res. 61, 1–54 (2019).

Article 

Google Scholar
 

Jayaramaiah, R. H., Egidi, E., Macdonald, C. A. & Singh, B. K. Linking biodiversity and biotic interactions to ecosystem functioning. J. Sustain. Agricult. Environ. 3, e12119 (2024).

Article 

Google Scholar
 

Loreau, M. et al. Biodiversity as insurance: from concept to measurement and application. Biol. Rev. 96, 2333–2354 (2021).

Article 

Google Scholar
 

Auger, G., Pottier, J., Mathieu, J. & Jabot, F. Space use of invertebrates in terrestrial habitats: phylogenetic, functional and environmental drivers of interspecific variations. Glob. Ecol. Biogeog. 33, e13811 (2024).

Article 

Google Scholar
 

Bartkowski, B. et al. Potential of the economic valuation of soil-based ecosystem services to inform sustainable soil management and policy. PeerJ 8, e8749 (2020).

Article 

Google Scholar
 

Darras, K. F. et al. Reducing fertilizer and avoiding herbicides in oil palm plantations — ecological and economic valuations. Front. For. Glob. Change 2, 65 (2019).

Article 

Google Scholar
 

Grass, I. et al. Trade-offs between multifunctionality and profit in tropical smallholder landscapes. Nat. Commun. 11, 1186 (2020).

Article 

Google Scholar
 

Paul, C., Kuhn, K., Steinhoff-Knopp, B., Weißhuhn, P. & Helming, K. Towards a standardization of soil-related ecosystem service assessments. Eur. J. Soil Sci. 72, 1543–1558 (2021).

Article 

Google Scholar
 

Pascual, U. et al. On the value of soil biodiversity and ecosystem services. Ecosyst. Serv. 15, 11–18 (2015).

Article 

Google Scholar
 

Bartkowski, B. Are diverse ecosystems more valuable? Economic value of biodiversity as result of uncertainty and spatial interactions in ecosystem service provision. Ecosyst. Serv. 24, 50–57 (2017).

Article 

Google Scholar
 

Plaas, E. et al. Towards valuation of biodiversity in agricultural soils: a case for earthworms. Ecol. Econ. 159, 291–300 (2019).

Article 

Google Scholar
 

Schon, N. & Dominati, E. Valuing earthworm contribution to ecosystem services delivery. Ecosyst. Serv. 43, 101092 (2020).

Article 

Google Scholar
 

Sidibé, Y., Foudi, S., Pascual, U. & Termansen, M. Adaptation to climate change in rainfed agriculture in the global south: soil biodiversity as natural insurance. Ecol. Econ. 146, 588–596 (2018).

Article 

Google Scholar
 

Bartkowski, B. et al. Adoption and potential of agri-environmental schemes in Europe: cross-regional evidence from interviews with farmers. People Nat. 5, 1610–1621 (2023).

Article 

Google Scholar
 

Stetter, C. & Cronauer, C. Climate and soil conditions shape farmers’ climate change adaptation preferences. Agricult. Econ. 56, 165–187 (2024).

Article 

Google Scholar
 

Bartkowski, B., Massenberg, J. R. & Lienhoop, N. Investigating preferences for soil-based ecosystem services. Q. Open 2, qoac035 (2022).

Article 

Google Scholar
 

Franceschinis, C. et al. The effect of social and personal norms on stated preferences for multiple soil functions: evidence from Australia and Italy. Aust. J. Agric. Resour. Econ. 66, 335–362 (2022).

Article 

Google Scholar
 

Dessart, F. J., Barreiro-Hurlé, J. & Van Bavel, R. Behavioural factors affecting the adoption of sustainable farming practices: a policy-oriented review. Eur. Rev. Agric. Econ. 46, 417–471 (2019).

Article 

Google Scholar
 

Köninger, J., Panagos, P., Jones, A., Briones, M. & Orgiazzi, A. In defence of soil biodiversity: towards an inclusive protection in the European Union. Biol. Conserv. 268, 109475 (2022).

Article 

Google Scholar
 

Bartkowski, B., Bartke, S., Hagemann, N., Hansjürgens, B. & Schröter-Schlaack, C. Application of the governance disruptions framework to German agricultural soil policy. SOIL 7, 495–509 (2021).

Article 

Google Scholar
 

Thamo, T. & Pannell, D. J. Challenges in developing effective policy for soil carbon sequestration: perspectives on additionality, leakage, and permanence. Clim. Policy 16, 973–992 (2016).

Article 

Google Scholar
 

Böcker, T., Britz, W., Möhring, N. & Finger, R. An economic and environmental assessment of a glyphosate ban for the example of maize production. Eur. Rev. Agric. Econ. 47, 371–402 (2020).


Google Scholar
Â