Volovik, G. E. Linear momentum in ferromagnets. J. Phys. C 20, L83 (1987).

Article 
ADS 

Google Scholar
 

Tatara, G. & Kohno, H. Theory of current-driven domain wall motion: spin transfer versus momentum transfer. Phys. Rev. Lett. 92, 086601 (2004).

Article 
ADS 

Google Scholar
 

Barnes, S. E. & Maekawa, S. Generalization of Faraday’s law to include nonconservative spin forces. Phys. Rev. Lett. 98, 246601 (2007).

Article 
ADS 

Google Scholar
 

Kishine, J.-i., Ovchinnikov, A. S. & Proskurin, I. V. Sliding conductivity of a magnetic kink crystal in a chiral helimagnet. Phys. Rev. B 82, 064407 (2010).

Article 
ADS 

Google Scholar
 

Nagaosa, N. Emergent inductor by spiral magnets. Jpn. J. Appl. Phys. 58, 120909 (2019).

Article 
ADS 

Google Scholar
 

Neubauer, A. et al. Topological Hall effect in the A phase of MnSi. Phys. Rev. Lett. 102, 186602 (2009).

Article 
ADS 

Google Scholar
 

Schulz, T. et al. Emergent electrodynamics of skyrmions in a chiral magnet. Nat. Phys. 8, 301–304 (2012).

Article 

Google Scholar
 

Nagaosa, N. & Tokura, Y. Emergent electromagnetism in solids. Phys. Scr. T146, 014020 (2012).

Article 
ADS 

Google Scholar
 

Yokouchi, T. et al. Emergent electromagnetic induction in a helical-spin magnet. Nature 586, 232–236 (2020).

Article 
ADS 

Google Scholar
 

Yang, S. A. et al. Universal electromotive force induced by domain wall motion. Phys. Rev. Lett. 102, 067201 (2009).

Article 
ADS 

Google Scholar
 

Shoka, Y. et al. Observation of anisotropic magneto-inductance effect. Appl. Phys. Express 16, 053006 (2023).

Article 
ADS 

Google Scholar
 

Matsushima, Y. et al. Emergent magneto-inductance effect in permalloy thin films on flexible polycarbonate substrates at room temperature. Appl. Phys. Lett. 124, 022404 (2024).

Article 
ADS 

Google Scholar
 

Zhang, Z. et al. Emergent magneto-inductance effect in NiFe thin films on glass substrates at room temperature. J. Magn. Magn. Mater. 610, 172500 (2024).

Article 

Google Scholar
 

Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

Article 
ADS 

Google Scholar
 

Finocchio, G., Büttner, F., Tomasello, R., Carpentieri, M. & Kläui, M. Magnetic skyrmions: from fundamental to applications. J. Phys. D 49, 423001 (2016).

Article 
ADS 

Google Scholar
 

Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

Article 
ADS 

Google Scholar
 

Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119 (2012).

Article 
ADS 

Google Scholar
 

Shibata, J., Tatara, G. & Kohno, H. A brief review of field- and current-driven domain-wall motion. J. Phys. D 44, 384004 (2011).

Article 

Google Scholar
 

Birch, M. T. et al. Dynamic transition and Galilean relativity of current-driven skyrmions. Nature 633, 554–559 (2024).

Article 
ADS 

Google Scholar
 

Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017).

Article 

Google Scholar
 

Furuta, S., Moody, S. H., Kado, K., Koshibae, W. & Kagawa, F. Energetic perspective on emergent inductance exhibited by magnetic textures in the pinned regime. npj Spintronics 1, 1 (2023).

Article 

Google Scholar
 

Kurebayashi, D. & Nomura, K. Theory for spin torque in Weyl semimetal with magnetic texture. Sci. Rep. 9, 5365 (2019).

Kurebayashi, D. & Nagaosa, N. Electromagnetic response in spiral magnets and emergent inductance. Commun. Phys. 4, 260 (2021).

Article 

Google Scholar
 

Yamane, Y., Fukami, S. & Ieda, J. Theory of emergent inductance with spin-orbit coupling effects. Phys. Rev. Lett. 128, 147201 (2022).

Article 
ADS 

Google Scholar
 

Araki, Y. & Ieda, J. Emergence of inductance and capacitance from topological electromagnetism. J. Phys. Soc. Jpn. 92, 074705 (2023).

Article 
ADS 

Google Scholar
 

Oh, T. & Nagaosa, N. Emergent inductance from spin fluctuations in strongly correlated magnets. Phys. Rev. Lett. 132, 116501 (2024).

Article 
ADS 
MathSciNet 

Google Scholar
 

Gaudet, J. et al. Weyl-mediated helical magnetism in NdAlSi. Nat. Mater. 20, 1650–1656 (2021).

Article 
ADS 

Google Scholar
 

Bouaziz, J., Bihlmayer, G., Patrick, C. E., Staunton, J. B. & Blügel, S. Origin of incommensurate magnetic order in the RAlSi magnetic Weyl semimetals (R = Pr, Nd, Sm). Phys. Rev. B 109, L201108 (2024).

Article 
ADS 

Google Scholar
 

Xu, S.-Y. et al. Discovery of Lorentz-violating type II Weyl fermions in LaAlGe. Sci. Adv. 3, e1603266 (2017).

Article 
ADS 

Google Scholar
 

Yamada, R. et al. Nernst effect of high-mobility Weyl electrons in NdAlSi enhanced by a Fermi surface nesting instability. Phys. Rev. X 14, 021012 (2024).


Google Scholar
 

Kobayashi, K., Ominato, Y. & Nomura, K. Helicity-protected domain-wall magnetoresistance in ferromagnetic Weyl semimetal. J. Phys. Soc. Jpn. 87, 073707 (2018).

Article 
ADS 

Google Scholar
 

Ominato, Y., Kobayashi, K. & Nomura, K. Anisotropic magnetotransport in Dirac-Weyl magnetic junctions. Phys. Rev. B 95, 085308 (2017).

Article 
ADS 

Google Scholar
 

Nguyen, A. K., Shchelushkin, R. V. & Brataas, A. Intrinsic domain-wall resistance in ferromagnetic semiconductors. Phys. Rev. Lett. 97, 136603 (2006).

Article 
ADS 

Google Scholar
 

Xuan Mei, X., Chen, M. & Li, H. Magnetotransport in magnetic junctions based on tilted Weyl semimetals. J. Appl. Phys. 130, 203901 (2021).

Article 
ADS 

Google Scholar
 

Araki, Y. Magnetic textures and dynamics in magnetic Weyl semimetals. Ann. Phys. 532, 1900287 (2020).

Article 
MathSciNet 

Google Scholar
 

Li, D.-X., Shao, X.-Q. & Yi, X.-X. Effect of environment on the scattering of electrons by a junction of different topological materials. Ann. Phys. 532, 1900399 (2020).

Article 
MathSciNet 

Google Scholar
 

Ieda, J. & Yamane, Y. Intrinsic and extrinsic tunability of Rashba spin-orbit coupled emergent inductors. Phys. Rev. B 103, L100402 (2021).

Article 
ADS 

Google Scholar
 

Seib, J. & Fähnle, M. Calculation of the Gilbert damping matrix at low scattering rates in Gd. Phys. Rev. B 82, 064401 (2010).

Article 
ADS 

Google Scholar
 

Mankovsky, S., Ködderitzsch, D., Woltersdorf, G. & Ebert, H. First-principles calculation of the Gilbert damping parameter via the linear response formalism with application to magnetic transition metals and alloys. Phys. Rev. B 87, 014430 (2013).

Article 
ADS 

Google Scholar
 

Bouzidi, D. & Suhl, H. Motion of a Bloch domain wall. Phys. Rev. Lett. 65, 2587 (1990).

Article 
ADS 

Google Scholar
 

Stamp, P. C. E. Quantum dynamics and tunneling of domain walls in ferromagnetic insulators. Phys. Rev. Lett. 66, 2802 (1991).

Article 
ADS 

Google Scholar
 

Braun, H.-B. & Loss, D. Berry’s phase and quantum dynamics of ferromagnetic solitons. Phys. Rev. B 53, 3237 (1996).

Article 
ADS 

Google Scholar
 

Le Maho, Y., Kim, J.-V. & Tatara, G. Spin-wave contributions to current-induced domain wall dynamics. Phys. Rev. B 79, 174404 (2009).

Article 
ADS 

Google Scholar
 

Brataas, A., Tserkovnyak, Y. & Bauer, G. E. W. Magnetization dissipation in ferromagnets from scattering theory. Phys. Rev. B 84, 054416 (2011).

Article 
ADS 

Google Scholar
 

Kim, S. K., Tchernyshyov, O., Galitski, V. & Tserkovnyak, Y. Magnon-induced non-Markovian friction of a domain wall in a ferromagnet. Phys. Rev. B 97, 174433 (2018).

Article 
ADS 

Google Scholar
 

Chudnovsky, E. M., Iglesias, O. & Stamp, P. C. E. Quantum tunneling of domain walls in ferromagnets. Phys. Rev. B 46, 5392 (1992).

Article 
ADS 

Google Scholar
 

Braun, H.-B., Kyriakidis, J. & Loss, D. Macroscopic quantum tunneling of ferromagnetic domain walls. Phys. Rev. B 56, 8129 (1997).

Article 
ADS 

Google Scholar
 

Wendl, A. et al. Emergence of mesoscale quantum phase transitions in a ferromagnet. Nature 609, 65–70 (2022).

Article 
ADS 

Google Scholar
 

Aharoni, A. Demagnetizing factors for rectangular ferromagnetic prisms. J. Appl. Phys. 83, 3432 (1998).

Article 
ADS 

Google Scholar
 

Yamada, R. Dataset for: Emergent electric field induced by dissipative sliding dynamics of domain walls in a Weyl magnet. Zenodo https://doi.org/10.5281/zenodo.17188494 (2025).

Kurumaji, T. Note on the interpretation of magnetic diffraction in NdAlSi: helical or fan? Preprint at https://arxiv.org/abs/2506.04000 (2025).