Ali, S. S. et al. Degradation of conventional plastic wastes in the environment: a review on current status of knowledge and future perspectives of disposal. Sci. Total Environ. 771, 144719 (2021).

Article 
CAS 

Google Scholar
 

Lau, W. W. Y. et al. Evaluating scenarios toward zero plastic pollution. Science. 369, 1455–1461 (2020).

Article 
CAS 

Google Scholar
 

Golwala, H., Zhang, X., Iskander, S. M. & Smith, A. L. Solid waste: an overlooked source of microplastics to the environment. Sci. Total Environ. 769, 144581 (2021).

Article 
CAS 

Google Scholar
 

He, P., Chen, L., Shao, L., Zhang, H. & Lü, F. Municipal solid waste (MSW) landfill: a source of microplastics? Evidence of microplastics in landfill leachate. Water Res. 159, 38–45 (2019).

Article 
CAS 

Google Scholar
 

Lin, X. et al. A landfill serves as a critical source of microplastic pollution and harbors diverse plastic biodegradation microbial species and enzymes: study in large-scale landfills, China. J. Hazard. Mater. 457, 131676 (2023).

Article 
CAS 

Google Scholar
 

Tait, P. W. et al. The health impacts of waste incineration: a systematic review. Australian N. Z. J. Public Health 44, 40–48 (2020).

Article 

Google Scholar
 

Yang, Z. et al. Is incineration the terminator of plastics and microplastics? J. Hazard. Mater. 401, 123429 (2021).

Article 
CAS 

Google Scholar
 

Hahladakis, J. N. & Iacovidou, E. An overview of the challenges and trade-offs in closing the loop of post-consumer plastic waste (PCPW): focus on recycling. J. Hazard. Mater. 380, 120887 (2019).

Article 
CAS 

Google Scholar
 

Schade, A. et al. Plastic waste recycling — a chemical recycling perspective. ACS Sustain. Chem. Eng. 12, 12270–12288 (2024).

Article 
CAS 

Google Scholar
 

Narancic, T. et al. Biodegradable plastic blends create new possibilities for end-of-life management of plastics but they are not a panacea for plastic pollution. Environ. Sci. Technol. 52, 10441–10452 (2018).

Article 
CAS 

Google Scholar
 

Kim, M. S. et al. A review of biodegradable plastics: chemistry, applications, properties, and future research needs. Chem. Rev. 123, 9915–9939 (2023).

Article 
CAS 

Google Scholar
 

Shen, L., Haufe, J. & Patel, M. K. Product overview and market projection of emerging bio-based plastics PRO-BIP 2009 (Utrecht University, 2009).

Zheng, J. & Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Change 9, 374–378 (2019).

Article 

Google Scholar
 

European Bioplastics. Bioplastics market development update 2022. europeanbioplastics.org https://docs.european-bioplastics.org/publications/market_data/2022/Report_Bioplastics_Market_Data_2022_short_version.pdf (2022).

Hellweg, S. & Milà i Canals, L. Emerging approaches, challenges and opportunities in life cycle assessment. Science. 344, 1109–1113 (2014).

Article 
CAS 

Google Scholar
 

Guinée, J. B. et al. Life cycle assessment: past, present, and future. Environ. Sci. Technol. 45, 90–96 (2011).

Article 

Google Scholar
 

Bishop, G., Styles, D. & Lens, P. N. L. Environmental performance comparison of bioplastics and petrochemical plastics: a review of life cycle assessment (LCA) methodological decisions. Resour. Conserv. Recycling 168, 105451 (2021).

Article 
CAS 

Google Scholar
 

Walker, S. & Rothman, R. Life cycle assessment of bio-based and fossil-based plastic: a review. J. Clean. Prod. 261, 121158 (2020).

Article 
CAS 

Google Scholar
 

Posen, I. D., Jaramillo, P. & Griffin, W. M. Uncertainty in the life cycle greenhouse gas emissions from U.S. production of three biobased polymer families. Environ. Sci. Technol. 50, 2846–2858 (2016).

Article 
CAS 

Google Scholar
 

Van Roijen, E. C. & Miller, S. A. A review of bioplastics at end-of-life: linking experimental biodegradation studies and life cycle impact assessments. Resour. Conserv. Recycling 181, 106236 (2022).

Article 

Google Scholar
 

Pinlova, B. et al. What can we learn about the climate change impacts of polylactic acid from a review and meta-analysis of lifecycle assessment studies? Sustain. Prod. Consum. 48, 396–406 (2024).

Article 

Google Scholar
 

Meys, R. et al. Achieving net-zero greenhouse gas emission plastics by a circular carbon economy. Science. 374, 71–76 (2021).

Article 
CAS 

Google Scholar
 

Stegmann, P., Daioglou, V., Londo, M., van Vuuren, D. P. & Junginger, M. Plastic futures and their CO2 emissions. Nature. 612, 272–276 (2022).

Article 
CAS 

Google Scholar
 

Dokl, M. et al. Global projections of plastic use, end-of-life fate and potential changes in consumption, reduction, recycling and replacement with bioplastics to 2050. Sustain. Prod. Consum. 51, 498–518 (2024).

Article 

Google Scholar
 

Corella-Puertas, E., Hajjar, C., Lavoie, J. & Boulay, A.-M. MarILCA characterization factors for microplastic impacts in life cycle assessment: physical effects on biota from emissions to aquatic environments. J. Clean. Prod. 418, 138197 (2023).

Article 
CAS 

Google Scholar
 

Piao, Z., Agyei Boakye, A. A. & Yao, Y. Environmental impacts of biodegradable microplastics. Nat. Chem. Eng. 1, 661–669 (2024).

Article 

Google Scholar
 

Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

Article 

Google Scholar
 

Hermann, B. G., Debeer, L., De Wilde, B., Blok, K. & Patel, M. K. To compost or not to compost: carbon and energy footprints of biodegradable materials’ waste treatment. Polym. Degrad. Stab. 96, 1159–1171 (2011).

Article 
CAS 

Google Scholar
 

Rossi, V. et al. Life cycle assessment of end-of-life options for two biodegradable packaging materials: sound application of the European waste hierarchy. J. Clean. Prod. 86, 132–145 (2015).

Article 

Google Scholar
 

Chae, Y. & An, Y.-J. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review. Environ. Pollut. 240, 387–395 (2018).

Article 
CAS 

Google Scholar
 

Li, W. C., Tse, H. F. & Fok, L. Plastic waste in the marine environment: a review of sources, occurrence and effects. Sci. Total Environ. 566–567, 333–349 (2016).

Article 

Google Scholar
 

de Souza Machado, A. A. et al. Impacts of microplastics on the soil biophysical environment. Environ. Sci. Technol. 52, 9656–9665 (2018).

Article 

Google Scholar
 

Zhang, G. S., Zhang, F. X. & Li, X. T. Effects of polyester microfibers on soil physical properties: perception from a field and a pot experiment. Sci. Total Environ. 670, 1–7 (2019).

Article 
CAS 

Google Scholar
 

Wan, Y., Wu, C., Xue, Q. & Hui, X. Effects of plastic contamination on water evaporation and desiccation cracking in soil. Sci. Total Environ. 654, 576–582 (2019).

Article 
CAS 

Google Scholar
 

Kwak, J. I. & An, Y.-J. Microplastic digestion generates fragmented nanoplastics in soils and damages earthworm spermatogenesis and coelomocyte viability. J. Hazard. Mater. 402, 124034 (2021).

Article 
CAS 

Google Scholar
 

Lahive, E., Walton, A., Horton, A. A., Spurgeon, D. J. & Svendsen, C. Microplastic particles reduce reproduction in the terrestrial worm Enchytraeus crypticus in a soil exposure. Environ. Pollut. 255, 113174 (2019).

Article 
CAS 

Google Scholar
 

Lozano, Y. M. & Rillig, M. C. Effects of microplastic fibers and drought on plant communities. Environ. Sci. Technol. 54, 6166–6173 (2020).

Article 
CAS 

Google Scholar
 

Rillig, M. C., Lehmann, A., de Souza Machado, A. A. & Yang, G. Microplastic effects on plants. New Phytol. 223, 1066–1070 (2019).

Article 

Google Scholar
 

de Ruijter, V. N., Redondo-Hasselerharm, P. E., Gouin, T. & Koelmans, A. A. Quality criteria for microplastic effect studies in the context of risk assessment: a critical review. Environ. Sci. Technol. 54, 11692–11705 (2020).

Article 

Google Scholar
 

Thompson, R. C. et al. Twenty years of microplastic pollution research — what have we learned? Science 386, eadl2746 (2024).

Article 
CAS 

Google Scholar
 

Høiberg, M. A., Woods, J. S. & Verones, F. Global distribution of potential impact hotspots for marine plastic debris entanglement. Ecol. Indic. 135, 108509 (2022).

Article 

Google Scholar
 

Gall, S. C. & Thompson, R. C. The impact of debris on marine life. Mar. Pollut. Bull. 92, 170–179 (2015).

Article 
CAS 

Google Scholar
 

Chen, Q., Allgeier, A., Yin, D. & Hollert, H. Leaching of endocrine disrupting chemicals from marine microplastics and mesoplastics under common life stress conditions. Environ. Int. 130, 104938 (2019).

Article 
CAS 

Google Scholar
 

Naqash, N., Prakash, S., Kapoor, D. & Singh, R. Interaction of freshwater microplastics with biota and heavy metals: a review. Environ. Chem. Lett. 18, 1813–1824 (2020).

Article 
CAS 

Google Scholar
 

OECD. Global Plastics Outlook: Policy Scenarios to 2060 (OECD Publishing, 2022).

Plastics Europe. Plastics — The Fast Facts 2024 (Plastics Europe, 2024).

Bachmann, M. et al. Towards circular plastics within planetary boundaries. Nat. Sustain. 6, 599–610 (2023).

Article 

Google Scholar
 

Hottle, T. A., Bilec, M. M. & Landis, A. E. Biopolymer production and end of life comparisons using life cycle assessment. Resour. Conserv. Recycling 122, 295–306 (2017).

Article 

Google Scholar
 

Wernet, G. et al. The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess. 21, 1218–1230 (2016).

Article 

Google Scholar
 

Chamas, A. et al. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 8, 3494–3511 (2020).

Article 
CAS 

Google Scholar
 

Cazaudehore, G. et al. Can anaerobic digestion be a suitable end-of-life scenario for biodegradable plastics? A critical review of the current situation, hurdles, and challenges. Biotechnol. Adv. 56, 107916 (2022).

Article 
CAS 

Google Scholar
 

Gastaldi, E. et al. Degradation and environmental assessment of compostable packaging mixed with biowaste in full-scale industrial composting conditions. Bioresour. Technol. 400, 130670 (2024).

Article 
CAS 

Google Scholar
 

Benavides, P. T., Lee, U. & Zarè-Mehrjerdi, O. Life cycle greenhouse gas emissions and energy use of polylactic acid, bio-derived polyethylene, and fossil-derived polyethylene. J. Clean. Prod. 277, 124010 (2020).

Article 
CAS 

Google Scholar
 

Papong, S. et al. Comparative assessment of the environmental profile of PLA and PET drinking water bottles from a life cycle perspective. J. Clean. Prod. 65, 539–550 (2014).

Article 
CAS 

Google Scholar
 

Krause, M. J. & Townsend, T. G. Life-cycle assumptions of landfilled polylactic acid underpredict methane generation. Environ. Sci. Technol. Lett. 3, 166–169 (2016).

Article 
CAS 

Google Scholar
 

Kolstad, J. J., Vink, E. T. H., De Wilde, B. & Debeer, L. Assessment of anaerobic degradation of Ingeo™ polylactides under accelerated landfill conditions. Polym. Degrad. Stab. 97, 1131–1141 (2012).

Article 
CAS 

Google Scholar
 

Stloukal, P. et al. Kinetics and mechanism of the biodegradation of PLA/clay nanocomposites during thermophilic phase of composting process. Waste Manag. 42, 31–40 (2015).

Article 
CAS 

Google Scholar
 

Hanson James, L., Yeşiller, N. & Oettle Nicolas, K. Spatial and temporal temperature distributions in municipal solid waste landfills. J. Environ. Eng. 136, 804–814 (2010).

Article 

Google Scholar
 

Eriksen, M. K., Pivnenko, K., Faraca, G., Boldrin, A. & Astrup, T. F. Dynamic material flow analysis of PET, PE, and PP flows in Europe: evaluation of the potential for circular economy. Environ. Sci. Technol. 54, 16166–16175 (2020).

Article 
CAS 

Google Scholar
 

Klotz, M., Haupt, M. & Hellweg, S. Potentials and limits of mechanical plastic recycling. J. Ind. Ecol. 27, 1043–1059 (2023).

Article 
CAS 

Google Scholar
 

Cabernard, L., Pfister, S., Oberschelp, C. & Hellweg, S. Growing environmental footprint of plastics driven by coal combustion. Nat. Sustain. 5, 139–148 (2022).

Article 

Google Scholar
 

Meng, F., Brandão, M. & Cullen, J. M. Replacing plastics with alternatives is worse for greenhouse gas emissions in most cases. Environ. Sci. Technol. 58, 2716–2727 (2024).

Article 
CAS 

Google Scholar
 

Luan, X. et al. Greenhouse gas emissions associated with plastics in China from 1950 to 2060. Resour. Conserv. Recycling 197, 107089 (2023).

Article 
CAS 

Google Scholar
 

Anshassi, M., Smallwood, T. & Townsend, T. G. Life cycle GHG emissions of MSW landfilling versus incineration: expected outcomes based on US landfill gas collection regulations. Waste Manag. 142, 44–54 (2022).

Article 
CAS 

Google Scholar
 

Posen, I. D., Jaramillo, P., Landis, A. E. & Griffin, W. M. Greenhouse gas mitigation for U.S. plastics production: energy first, feedstocks later. Environ. Res. Lett. 12, 034024 (2017).

Article 

Google Scholar
 

Wang, X.-Y., Gao, Y. & Tang, Y. Sustainable developments in polyolefin chemistry: progress, challenges, and outlook. Prog. Polym. Sci. 143, 101713 (2023).

Article 
CAS 

Google Scholar
 

Ran, H., Zhang, S., Ni, W. & Jing, Y. Precise activation of C–C bonds for recycling and upcycling of plastics. Chem. Sci. 15, 795–831 (2024).

Article 
CAS 

Google Scholar
 

Somoza-Tornos, A. et al. Realizing the potential high benefits of circular economy in the chemical industry: ethylene monomer recovery via polyethylene pyrolysis. ACS Sustain. Chem. Eng. 8, 3561–3572 (2020).

Article 
CAS 

Google Scholar
 

Vogt, B. D., Stokes, K. K. & Kumar, S. K. Why is recycling of postconsumer plastics so challenging? ACS Appl. Polym. Mater. 3, 4325–4346 (2021).

Article 
CAS 

Google Scholar
 

Burkart, M. D., Hazari, N., Tway, C. L. & Zeitler, E. L. Opportunities and challenges for catalysis in carbon dioxide utilization. ACS Catal. 9, 7937–7956 (2019).

Article 
CAS 

Google Scholar
 

Zhong, J. et al. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem. Soc. Rev. 49, 1385–1413 (2020).

Article 
CAS 

Google Scholar
 

Navarro-Jaén, S. et al. Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat. Rev. Chem. 5, 564–579 (2021).

Article 

Google Scholar
 

Kattel, S., Ramírez, P. J., Chen, J. G., Rodriguez, J. A. & Liu, P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science. 355, 1296–1299 (2017).

Article 
CAS 

Google Scholar
 

Rosenbloom, D., Markard, J., Geels, F. W. & Fuenfschilling, L. Why carbon pricing is not sufficient to mitigate climate change — and how ‘sustainability transition policy’ can help. Proc. Natl Acad. Sci. USA 117, 8664–8668 (2020).

Article 
CAS 

Google Scholar
 

Silva, A. L. P. et al. Microplastics in landfill leachates: the need for reconnaissance studies and remediation technologies. Case Stud. Chem. Environ. Eng. 3, 100072 (2021).

Article 
CAS 

Google Scholar
 

Kabir, M. S., Wang, H., Luster-Teasley, S., Zhang, L. & Zhao, R. Microplastics in landfill leachate: sources, detection, occurrence, and removal. Environ. Sci. Ecotechnol. 16, 100256 (2023).

Article 
CAS 

Google Scholar
 

Kookos, I. K., Koutinas, A. & Vlysidis, A. Life cycle assessment of bioprocessing schemes for poly(3-hydroxybutyrate) production using soybean oil and sucrose as carbon sources. Resour. Conserv. Recycling 141, 317–328 (2019).

Article 

Google Scholar
 

Muiruri, J. K. et al. Poly(hydroxyalkanoates): production, applications and end-of-life strategies–life cycle assessment nexus. ACS Sustain. Chem. Eng. 10, 3387–3406 (2022).

Article 
CAS 

Google Scholar
 

Suwanmanee, U. et al. Life cycle assessment of single use thermoform boxes made from polystyrene (PS), polylactic acid, (PLA), and PLA/starch: cradle to consumer gate. Int. J. Life Cycle Assess. 18, 401–417 (2013).

Article 
CAS 

Google Scholar
 

Moretti, C. et al. Cradle-to-grave life cycle assessment of single-use cups made from PLA, PP and PET. Resour. Conserv. Recycling 169, 105508 (2021).

Article 
CAS 

Google Scholar
 

Forster, P. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 923–1054 (Cambridge Univ. Press, 2021).

Tamburini, E. et al. Plastic (PET) vs bioplastic (PLA) or refillable aluminium bottles — what is the most sustainable choice for drinking water? A life-cycle (LCA) analysis. Environ. Res. 196, 110974 (2021).

Article 
CAS 

Google Scholar
 

Beigbeder, J., Soccalingame, L., Perrin, D., Bénézet, J.-C. & Bergeret, A. How to manage biocomposites wastes end of life? A life cycle assessment approach (LCA) focused on polypropylene (PP)/wood flour and polylactic acid (PLA)/flax fibres biocomposites. Waste Manag. 83, 184–193 (2019).

Article 
CAS 

Google Scholar
 

Xiong, L. et al. Biodegradable mulch film enhances the environmental sustainability compared with traditional polyethylene film from multidimensional perspectives. Chem. Eng. J. 492, 152219 (2024).

Article 
CAS 

Google Scholar
 

van der Harst, E., Potting, J. & Kroeze, C. Multiple data sets and modelling choices in a comparative LCA of disposable beverage cups. Sci. Total Environ. 494-495, 129–143 (2014).

Article 

Google Scholar
 

Mhaddolkar, N., Lodato, C., Tischberger-Aldrian, A., Vollprecht, D. & Fruergaard Astrup, T. Biodegradable plastics — where to throw? A life cycle assessment of waste collection and management pathways in Austria. Waste Manag. 190, 578–592 (2024).

Article 
CAS 

Google Scholar
 

Austin, K. G., Jones, J. P. H. & Clark, C. M. A review of domestic land use change attributable to U.S. biofuel policy. Renew. Sustain. Energy Rev. 159, 112181 (2022).

Article 

Google Scholar
 

Kim, T., Bhatt, A., Tao, L. & Benavides, P. T. Life cycle analysis of polylactic acids from different wet waste feedstocks. J. Clean. Prod. 380, 135110 (2022).

Article 
CAS 

Google Scholar
 

Prussi, M. et al. CORSIA: the first internationally adopted approach to calculate life-cycle GHG emissions for aviation fuels. Renew. Sustain. Energy Rev. 150, 111398 (2021).

Article 
CAS 

Google Scholar
 

UNEP. Mapping of Global Plastics Value Chain and Plastics Losses to the Environment (with a Particular Focus on Marine Environment) (United Nations Environment Programme (UNEP), 2018).

Heller, M. C., Mazor, M. H. & Keoleian, G. A. Plastics in the US: toward a material flow characterization of production, markets and end of life. Environ. Res. Lett. 15, 094034 (2020).

Article 
CAS 

Google Scholar
 

Jaikumar, G., Baas, J., Brun, N. R., Vijver, M. G. & Bosker, T. Acute sensitivity of three Cladoceran species to different types of microplastics in combination with thermal stress. Environ. Pollut. 239, 733–740 (2018).

Article 
CAS 

Google Scholar
 

Ziajahromi, S., Kumar, A., Neale, P. A. & Leusch, F. D. L. Impact of microplastic beads and fibers on waterflea (Ceriodaphnia dubia) survival, growth, and reproduction: implications of single and mixture exposures. Environ. Sci. Technol. 51, 13397–13406 (2017).

Article 
CAS 

Google Scholar
 

Cong, Y. et al. Ingestion, egestion and post-exposure effects of polystyrene microspheres on marine medaka (Oryzias melastigma). Chemosphere. 228, 93–100 (2019).

Article 
CAS 

Google Scholar
 

Askham, C. et al. Generating environmental sampling and testing data for micro- and nanoplastics for use in life cycle impact assessment. Sci. Total Environ. 859, 160038 (2023).

Article 
CAS 

Google Scholar
 

Schwarz, A. E. et al. Microplastic aquatic impacts included in life cycle assessment. Resour. Conserv. Recycling 209, 107787 (2024).

Article 
CAS 

Google Scholar
 

Maga, D. et al. Methodology to address potential impacts of plastic emissions in life cycle assessment. Int. J. Life Cycle Assess. 27, 469–491 (2022).

Article 
CAS 

Google Scholar
 

Saling, P., Gyuzeleva, L., Wittstock, K., Wessolowski, V. & Griesshammer, R. Life cycle impact assessment of microplastics as one component of marine plastic debris. Int. J. Life Cycle Assess. 25, 2008–2026 (2020).

Article 

Google Scholar
 

Zhao, X. & You, F. Life cycle assessment of microplastics reveals their greater environmental hazards than mismanaged polymer waste losses. Environ. Sci. Technol. 56, 11780–11797 (2022).

Article 
CAS 

Google Scholar
 

Rosenbaum, R. K. et al. USEtox — the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int. J. Life Cycle Assess. 13, 532–546 (2008).

Article 
CAS 

Google Scholar
 

Pellengahr, F. et al. Modeling marine microplastic emissions in life cycle assessment: characterization factors for biodegradable polymers and their application in a textile case study. Front. Toxicol. 7, 1494220 (2025).

Article 

Google Scholar
 

Kawecki, D. & Nowack, B. Polymer-specific modeling of the environmental emissions of seven commodity plastics as macro- and microplastics. Environ. Sci. Technol. 53, 9664–9676 (2019).

Article 
CAS 

Google Scholar
 

Beiras, R., Verdejo, E., Campoy-López, P. & Vidal-Liñán, L. Aquatic toxicity of chemically defined microplastics can be explained by functional additives. J. Hazard. Mater. 406, 124338 (2021).

Article 
CAS 

Google Scholar
 

Lavoie, J., Boulay, A.-M. & Bulle, C. Aquatic micro- and nano-plastics in life cycle assessment: development of an effect factor for the quantification of their physical impact on biota. J. Ind. Ecol. 26, 2123–2135 (2022).

Article 
CAS 

Google Scholar
 

Khalid, N., Aqeel, M., Noman, A., Khan, S. M. & Akhter, N. Interactions and effects of microplastics with heavy metals in aquatic and terrestrial environments. Environ. Pollut. 290, 118104 (2021).

Article 
CAS 

Google Scholar
 

Brennecke, D., Duarte, B., Paiva, F., Caçador, I. & Canning-Clode, J. Microplastics as vector for heavy metal contamination from the marine environment. Estuarine Coast. Shelf Sci. 178, 189–195 (2016).

Article 
CAS 

Google Scholar
 

Henderson, A. D. et al. USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties. Int. J. Life Cycle Assess. 16, 701–709 (2011).

Article 
CAS 

Google Scholar
 

Guo, J.-J. et al. Source, migration and toxicology of microplastics in soil. Environ. Int. 137, 105263 (2020).

Article 
CAS 

Google Scholar
 

Zhao, S. et al. Review on migration, transformation and ecological impacts of microplastics in soil. Appl. Soil Ecol. 176, 104486 (2022).

Article 

Google Scholar
 

Wang, W., Ge, J., Yu, X. & Li, H. Environmental fate and impacts of microplastics in soil ecosystems: progress and perspective. Sci. Total Environ. 708, 134841 (2020).

Article 
CAS 

Google Scholar
 

Born, M. P., Brüll, C. & Schüttrumpf, H. Implications of a new test facility for fragmentation investigations on virgin (micro)plastics. Environ. Sci. Technol. 57, 10393–10403 (2023).

Article 
CAS 

Google Scholar
 

Bao, R. et al. Secondary microplastics formation and colonized microorganisms on the surface of conventional and degradable plastic granules during long-term UV aging in various environmental media. J. Hazard. Mater. 439, 129686 (2022).

Article 
CAS 

Google Scholar
 

Brizga, J., Hubacek, K. & Feng, K. The unintended side effects of bioplastics: carbon, land, and water footprints. One Earth 3, 45–53 (2020).

Article 

Google Scholar
 

Morão, A. & de Bie, F. Life cycle impact assessment of polylactic acid (PLA) produced from sugarcane in Thailand. J. Polym. Environ. 27, 2523–2539 (2019).

Article 

Google Scholar
 

Islam, M. et al. Impact of bioplastics on environment from its production to end-of-life. Process. Saf. Environ. Prot. 188, 151–166 (2024).

Article 
CAS 

Google Scholar
 

Oever, M. V. D., Molenveld, K., Zee, M. V. D. & Bos, H. Bio-based and Biodegradable Plastics — Facts and Figures (Wageningen University, 2017).

Wang, B.-X., Cortes-Peña, Y., Grady, B. P., Huber, G. W. & Zavala, V. M. Techno-economic analysis and life cycle assessment of the production of biodegradable polyaliphatic–polyaromatic polyesters. ACS Sustain. Chem. Eng. 12, 9156–9167 (2024).

Article 
CAS 

Google Scholar
 

Yang, N. et al. Plastic film mulching for water-efficient agricultural applications and degradable films materials development research. Mater. Manuf. Process. 30, 143–154 (2015).

Article 
CAS 

Google Scholar
 

Aldas, M. et al. The impact of biodegradable plastics in the properties of recycled polyethylene terephthalate. J. Polym. Environ. 29, 2686–2700 (2021).

Article 
CAS 

Google Scholar
 

Zhu, J. & Wang, C. Biodegradable plastics: green hope or greenwashing? Mar. Pollut. Bull. 161, 111774 (2020).

Article 
CAS 

Google Scholar
 

EEA. Bio-waste in Europe — Turning Challenges into Opportunities (European Environment Agency, 2020).

Okori, F., Lederer, J., Komakech, A. J., Schwarzböck, T. & Fellner, J. Plastics and other extraneous matter in municipal solid waste compost: a systematic review of sources, occurrence, implications, and fate in amended soils. Environ. Adv. 15, 100494 (2024).

Article 
CAS 

Google Scholar
 

Kaza, S., Yao, L. C., Bhada-Tata, P. & Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 (World Bank, 2018).

NASEM. Municipal Solid Waste Recycling in the United States: Analysis of Current and Alternative Approaches (National Academies of Sciences, Engineering and Medicine, 2025).

European Union. Regulation (EU) 2025/40 of the European Parliament and of the Council of 19 December 2024 on Packaging and Packaging Waste (European Parliament and the Council, 2025).

Brooks, A. L. & Havas, V. Strengthening global plastic policy with systems analysis. Nat. Sustain. 8, 714–723 (2025).

Article 

Google Scholar
 

Del Borghi, A. LCA and communication: environmental product declaration. Int. J. Life Cycle Assess. 18, 293–295 (2013).

Article 

Google Scholar
 

Moré, F. B., Galindro, B. M. & Soares, S. R. Assessing the completeness and comparability of environmental product declarations. J. Clean. Prod. 375, 133999 (2022).

Article 

Google Scholar
 

van der Hulst, M. K. et al. Greenhouse gas benefits from direct chemical recycling of mixed plastic waste. Resour. Conserv. Recycling 186, 106582 (2022).

Article 

Google Scholar
 

Merchan, A. L. et al. Chemical recycling of bioplastics: technical opportunities to preserve chemical functionality as path towards a circular economy. Green Chem. 24, 9428–9449 (2022).

Article 
CAS 

Google Scholar
 

Van Roijen, E. & Miller, S. A. Leveraging biogenic resources to achieve global plastic decarbonization by 2050. Nat. Commun. 16, 7659 (2025).

Article 

Google Scholar
 

EEA. Biodegradable and Compostable Plastics — Challenges and Opportunities (European Environment Agency, 2020).

Filiciotto, L. & Rothenberg, G. Biodegradable plastics: standards, policies, and impacts. ChemSusChem 14, 56–72 (2021).

Article 
CAS 

Google Scholar
 

European Bioplastics. Fact Sheet: What are Bioplastics? (European Bioplastics, 2022).

Saalah, S., Saallah, S., Rajin, M. & Yaser, A. Z. in Advances in Waste Processing Technology (ed. Abu Zahrim, Y.) 127–143 (Springer, 2020).

Rosenboom, J.-G., Langer, R. & Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 7, 117–137 (2022).

Article 

Google Scholar
 

Rujnić-Sokele, M. & Pilipović, A. Challenges and opportunities of biodegradable plastics: a mini review. Waste Manag. Res. 35, 132–140 (2017).

Article 

Google Scholar
Â