Baker, M. A. B. & Berry, R. M. An introduction to the physics of the bacterial flagellar motor: a nanoscale rotary electric motor. Contemp. Phys. 50, 617–632 (2009).
Schliwa, M. Molecular Motors (Wiley, 2004).
Vale, R. D. & Milligan, R. A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000).
Brown, A. I. & Sivak, D. A. Theory of nonequilibrium free energy transduction by molecular machines. Chem. Rev. 120, 434–459 (2020).
Goodsell, D. S. The Machinery of Life (Copernicus, 2009).
Aprahamian, I. The future of molecular machines. ACS Cent. Sci. 6, 347–358 (2020).
Kassem, S. et al. Artificial molecular motors. Chem. Soc. Rev. 46, 2592–2621 (2017).
Astumian, R. D. Kinetic asymmetry and directionality of nonequilibrium molecular systems. Angew. Chem. Int. Ed. 63, e202306569 (2024).
Mondal, A., Toyoda, R., Costil, R. & Feringa, B. L. Chemically driven rotatory molecular machines. Angew. Chem. Int. Ed. 61, e20220663 (2022).
Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).
Corra, S., Curcio, M., Baroncini, M., Silvi, S. & Credi, A. Photoactivated artificial molecular machines that can perform tasks. Adv. Mater. 32, 1906064 (2020).
Baroncini, M., Silvi, S. & Credi, A. Photo- and redox-driven artificial molecular motors. Chem. Rev. 120, 200–268 (2020).
Pooler, D. R. S., Lubbe, A. S., Crespi, S. & Feringa, B. L. Designing light-driven rotary molecular motors. Chem. Sci. 12, 14964–14986 (2021).
Oruganti, B., Wang, J. & Durbeej, B. Quantum chemical design of rotary molecular motors. Int. J. Quantum Chem. 118, e25405 (2018).
Sheng, J. et al. Formylation boosts the performance of light-driven overcrowded alkene-derived rotary molecular motors. Nat. Chem. 16, 1330–1338 (2024).
Boursalian, G. B. et al. All-photochemical rotation of molecular motors with a phosphorus stereoelement. J. Am. Chem. Soc. 142, 16868–16876 (2020).
Roke, D., Wezenberg, S. J. & Feringa, B. L. Molecular rotary motors: unidirectional motion around double bonds. Proc. Natl Acad. Sci. USA 115, 9423–9431 (2018).
Kistemaker, J. C. M. et al. Third-generation light-driven symmetric molecular motors. J. Am. Chem. Soc. 139, 9650–9661 (2017).
Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).
Greb, L., Eichhofer, A. & Lehn, J.-M. Synthetic molecular motors: thermal N inversion and directional photoinduced CN bond rotation of camphorquinone imines. Angew. Chem. Int. Ed. 54, 14345–14348 (2015).
Greb, L. & Lehn, J.-M. Light-driven molecular motors: imines as four-step or two-step unidirectional rotors. J. Am. Chem. Soc. 136, 13114–13117 (2014).
Gerwien, A., Gnannt, F., Mayer, P. & Dube, H. Photogearing as a concept for translation of precise motions at the nanoscale. Nat. Chem. 14, 670–676 (2022).
Wilcken, R. et al. Complete mechanism of hemithioindigo motor rotation. J. Am. Chem. Soc. 140, 5311–5318 (2018).
Gerwien, A., Mayer, P. & Dube, H. Photon-only molecular motor with reverse temperature-dependent efficiency. J. Am. Chem. Soc. 140, 16442–16445 (2018).
Guentner, M. et al. Sunlight-powered kHz rotation of a hemithioindigo-based molecular motor. Nat. Commun. 6, 8406 (2015).
Kuntze, K. et al. A visible-light-driven molecular motor based on barbituric acid. Chem. Sci. 14, 8458–8465 (2023).
Filatov, M. et al. Towards the engineering of a photon-only two-stroke rotary molecular motor. Nat. Commun. 13, 6433 (2022).
Pooler, D. R. S., Doellerer, D., Crespi, S. & Feringa, B. L. Controlling rotary motion of molecular motors based on oxindole. Org. Chem. Front. 9, 2084–2092 (2022).
Perrot, A., Wang, W., Buhler, E., Moulin, E. & Giuseppone, N. Bending actuation of hydrogels through rotation of light-driven molecular motors. Angew. Chem. Int. Ed. 62, e202300263 (2023).
Chen, J. et al. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat. Chem. 10, 132–138 (2018).
Foy, J. T. et al. Dual-light control of nanomachines that integrate motor and modulator subunits. Nat. Nanotechnol. 12, 540–545 (2017).
Li, Q. et al. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat. Nanotechnol. 10, 161–165 (2015).
Qutbuddin, Y. et al. Light-activated synthetic rotary motors in lipid membranes induce shape changes through membrane expansion. Adv. Mater. 36, 2311176 (2024).
Li, Q., Tan, J. & Sun, T. Light-driven Feringa motors for precision molecular mechanotherapeutics. Trends Chem. 5, 653–656 (2023).
Guinart, A. et al. Synthetic molecular motor activates drug delivery from polymersomes. Proc. Natl Acad. Sci. USA 120, e2301279120 (2023).
Corra, S., Curcio, M. & Credi, A. Photoactivated artificial molecular motors. JACS Au 3, 1301–1313 (2023).
Zhang, Q., Qu, D.-H., Tian, H. & Feringa, B. L. Bottom-up: can supramolecular tools deliver responsiveness from molecular motors to macroscopic materials? Matter 3, 355–370 (2020).
Jerca, F. A., Jerca, V. V. & Hoogenboom, R. Advances and opportunities in the exciting world of azobenzenes. Nat. Rev. Chem. 6, 51–69 (2022).
Asaka, T., Akai, N., Kawai, A. & Shibuya, K. Photochromism of 3-butyl-1-methyl-2-phenylazoimidazolium in room temperature ionic liquids. J. Photochem. Photobiol. A 209, 12–18 (2010).
Borsley, S., Kreidt, E., Leigh, D. A. & Roberts, B. M. W. Autonomous fuelled directional rotation about a covalent single bond. Nature 604, 80–85 (2022).
Greenfield, J. L. et al. Molecular Photoswitches (ed. Pianowski, Z. L.) Ch. 5 (Wiley, 2022).
Lin, I. J. B. & Vasam, C. S. Preparation and application of N-heterocyclic carbene complexes of Ag(I). Coord. Chem. Rev. 251, 642–670 (2007).
Nicoli, F. et al. Photoinduced autonomous nonequilibrium operation of a molecular shuttle by combined isomerization and proton transfer through a catalytic pathway. J. Am. Chem. Soc. 144, 10180–10185 (2022).
Hugelshofer, C. L., Mellem, K. T. & Myers, A. G. Synthesis of quaternary α-methyl α-amino acids by asymmetric alkylation of pseudoephenamine alaninamide pivaldimine. Org. Lett. 15, 3134–3137 (2013).
Onsager, L. Reciprocal relations in irreversible processes. Phys. Rev. 37, 405–426 (1931).
Astumian, R. D. Microscopic reversibility as the organizing principle of molecular machines. Nat. Nanotechnol. 7, 684–688 (2012).
Uhl, E., Thumser, S., Mayer, P. & Dube, H. Transmission of unidirectional molecular motor rotation to a remote biaryl axis. Angew. Chem. Int. Ed. 57, 11064–11068 (2018).
Weingart, O., Lan, Z., Thiel, W. & Thiel, W. Chiral pathways and periodic decay in cis-azobenzene photodynamics. J. Phys. Chem. Lett. 2, 1506–1509 (2011).
Wang, Y.-T. et al. Photoisomerization of arylazopyrazole photoswitches: stereospecific excited-state relaxation. Angew. Chem. Int. Ed. 55, 14009–14013 (2016).
Aleotti, F. et al. Multidimensional potential energy surfaces resolved at the RASPT2 level for accurate photoinduced isomerization dynamics of azobenzene. J. Chem. Theory Comput. 15, 6813–6823 (2019).
Nenov, A. et al. UV-light-induced vibrational coherences: the key to understand Kasha rule violation in trans-azobenzene. J. Phys. Chem. Lett. 9, 1534–1541 (2018).
Casellas, J., Bearpark, M. J. & Reguero, M. Excited-state decay in the photoisomerization of azobenzene: a new balance between mechanisms. ChemPhysChem 17, 3068–3079 (2016).
Moghaddam, K. G., Giudetti, G., Sipma, W. & Faraji, S. Theoretical insights into the effect of size and substitution patterns of azobenzene derivatives on the DNA G-quadruplex. Phys. Chem. Chem. Phys. 22, 26944–26954 (2020).
Vela, S., Krüger, C. & Corminboeuf, C. Exploring chemical space in the search for improved azoheteroarene-based photoswitches. Phys. Chem. Chem. Phys. 21, 20782–20790 (2019).
Corra, S. et al. Kinetic and energetic insights into the dissipative non-equilibrium operation of an autonomous light-powered supramolecular pump. Nat. Nanotechnol. 17, 746–751 (2022).
Sangchai, T., Al Shehimy, S., Penocchio, E. & Ragazzon, G. Artificial molecular ratchets: tools enabling endergonic processes. Angew. Chem. Int. Ed. 62, e202309501 (2023).
Falivene, L. et al. Towards the online computer-aided design of catalytic pockets. Nat. Chem. 11, 872–879 (2019).