Baker, M. A. B. & Berry, R. M. An introduction to the physics of the bacterial flagellar motor: a nanoscale rotary electric motor. Contemp. Phys. 50, 617–632 (2009).

Article 

Google Scholar
 

Schliwa, M. Molecular Motors (Wiley, 2004).

Vale, R. D. & Milligan, R. A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000).

Article 
CAS 
PubMed 

Google Scholar
 

Brown, A. I. & Sivak, D. A. Theory of nonequilibrium free energy transduction by molecular machines. Chem. Rev. 120, 434–459 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Goodsell, D. S. The Machinery of Life (Copernicus, 2009).

Aprahamian, I. The future of molecular machines. ACS Cent. Sci. 6, 347–358 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kassem, S. et al. Artificial molecular motors. Chem. Soc. Rev. 46, 2592–2621 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Astumian, R. D. Kinetic asymmetry and directionality of nonequilibrium molecular systems. Angew. Chem. Int. Ed. 63, e202306569 (2024).

Article 
CAS 

Google Scholar
 

Mondal, A., Toyoda, R., Costil, R. & Feringa, B. L. Chemically driven rotatory molecular machines. Angew. Chem. Int. Ed. 61, e20220663 (2022).

Article 

Google Scholar
 

Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Corra, S., Curcio, M., Baroncini, M., Silvi, S. & Credi, A. Photoactivated artificial molecular machines that can perform tasks. Adv. Mater. 32, 1906064 (2020).

Article 
CAS 

Google Scholar
 

Baroncini, M., Silvi, S. & Credi, A. Photo- and redox-driven artificial molecular motors. Chem. Rev. 120, 200–268 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Pooler, D. R. S., Lubbe, A. S., Crespi, S. & Feringa, B. L. Designing light-driven rotary molecular motors. Chem. Sci. 12, 14964–14986 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Oruganti, B., Wang, J. & Durbeej, B. Quantum chemical design of rotary molecular motors. Int. J. Quantum Chem. 118, e25405 (2018).

Article 

Google Scholar
 

Sheng, J. et al. Formylation boosts the performance of light-driven overcrowded alkene-derived rotary molecular motors. Nat. Chem. 16, 1330–1338 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Boursalian, G. B. et al. All-photochemical rotation of molecular motors with a phosphorus stereoelement. J. Am. Chem. Soc. 142, 16868–16876 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Roke, D., Wezenberg, S. J. & Feringa, B. L. Molecular rotary motors: unidirectional motion around double bonds. Proc. Natl Acad. Sci. USA 115, 9423–9431 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kistemaker, J. C. M. et al. Third-generation light-driven symmetric molecular motors. J. Am. Chem. Soc. 139, 9650–9661 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

Article 
CAS 
PubMed 

Google Scholar
 

Greb, L., Eichhofer, A. & Lehn, J.-M. Synthetic molecular motors: thermal N inversion and directional photoinduced CN bond rotation of camphorquinone imines. Angew. Chem. Int. Ed. 54, 14345–14348 (2015).

Article 
CAS 

Google Scholar
 

Greb, L. & Lehn, J.-M. Light-driven molecular motors: imines as four-step or two-step unidirectional rotors. J. Am. Chem. Soc. 136, 13114–13117 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Gerwien, A., Gnannt, F., Mayer, P. & Dube, H. Photogearing as a concept for translation of precise motions at the nanoscale. Nat. Chem. 14, 670–676 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Wilcken, R. et al. Complete mechanism of hemithioindigo motor rotation. J. Am. Chem. Soc. 140, 5311–5318 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Gerwien, A., Mayer, P. & Dube, H. Photon-only molecular motor with reverse temperature-dependent efficiency. J. Am. Chem. Soc. 140, 16442–16445 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Guentner, M. et al. Sunlight-powered kHz rotation of a hemithioindigo-based molecular motor. Nat. Commun. 6, 8406 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Kuntze, K. et al. A visible-light-driven molecular motor based on barbituric acid. Chem. Sci. 14, 8458–8465 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Filatov, M. et al. Towards the engineering of a photon-only two-stroke rotary molecular motor. Nat. Commun. 13, 6433 (2022).

Article 
CAS 

Google Scholar
 

Pooler, D. R. S., Doellerer, D., Crespi, S. & Feringa, B. L. Controlling rotary motion of molecular motors based on oxindole. Org. Chem. Front. 9, 2084–2092 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Perrot, A., Wang, W., Buhler, E., Moulin, E. & Giuseppone, N. Bending actuation of hydrogels through rotation of light-driven molecular motors. Angew. Chem. Int. Ed. 62, e202300263 (2023).

Article 
CAS 

Google Scholar
 

Chen, J. et al. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat. Chem. 10, 132–138 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Foy, J. T. et al. Dual-light control of nanomachines that integrate motor and modulator subunits. Nat. Nanotechnol. 12, 540–545 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Li, Q. et al. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat. Nanotechnol. 10, 161–165 (2015).

Article 
PubMed 

Google Scholar
 

Qutbuddin, Y. et al. Light-activated synthetic rotary motors in lipid membranes induce shape changes through membrane expansion. Adv. Mater. 36, 2311176 (2024).

Article 
CAS 

Google Scholar
 

Li, Q., Tan, J. & Sun, T. Light-driven Feringa motors for precision molecular mechanotherapeutics. Trends Chem. 5, 653–656 (2023).

Article 
CAS 

Google Scholar
 

Guinart, A. et al. Synthetic molecular motor activates drug delivery from polymersomes. Proc. Natl Acad. Sci. USA 120, e2301279120 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Corra, S., Curcio, M. & Credi, A. Photoactivated artificial molecular motors. JACS Au 3, 1301–1313 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, Q., Qu, D.-H., Tian, H. & Feringa, B. L. Bottom-up: can supramolecular tools deliver responsiveness from molecular motors to macroscopic materials? Matter 3, 355–370 (2020).

Article 

Google Scholar
 

Jerca, F. A., Jerca, V. V. & Hoogenboom, R. Advances and opportunities in the exciting world of azobenzenes. Nat. Rev. Chem. 6, 51–69 (2022).

Article 
PubMed 

Google Scholar
 

Asaka, T., Akai, N., Kawai, A. & Shibuya, K. Photochromism of 3-butyl-1-methyl-2-phenylazoimidazolium in room temperature ionic liquids. J. Photochem. Photobiol. A 209, 12–18 (2010).

Article 
CAS 

Google Scholar
 

Borsley, S., Kreidt, E., Leigh, D. A. & Roberts, B. M. W. Autonomous fuelled directional rotation about a covalent single bond. Nature 604, 80–85 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Greenfield, J. L. et al. Molecular Photoswitches (ed. Pianowski, Z. L.) Ch. 5 (Wiley, 2022).

Lin, I. J. B. & Vasam, C. S. Preparation and application of N-heterocyclic carbene complexes of Ag(I). Coord. Chem. Rev. 251, 642–670 (2007).

Article 
CAS 

Google Scholar
 

Nicoli, F. et al. Photoinduced autonomous nonequilibrium operation of a molecular shuttle by combined isomerization and proton transfer through a catalytic pathway. J. Am. Chem. Soc. 144, 10180–10185 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hugelshofer, C. L., Mellem, K. T. & Myers, A. G. Synthesis of quaternary α-methyl α-amino acids by asymmetric alkylation of pseudoephenamine alaninamide pivaldimine. Org. Lett. 15, 3134–3137 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Onsager, L. Reciprocal relations in irreversible processes. Phys. Rev. 37, 405–426 (1931).

Article 
CAS 

Google Scholar
 

Astumian, R. D. Microscopic reversibility as the organizing principle of molecular machines. Nat. Nanotechnol. 7, 684–688 (2012).

Article 
CAS 
PubMed 

Google Scholar
 

Uhl, E., Thumser, S., Mayer, P. & Dube, H. Transmission of unidirectional molecular motor rotation to a remote biaryl axis. Angew. Chem. Int. Ed. 57, 11064–11068 (2018).

Article 
CAS 

Google Scholar
 

Weingart, O., Lan, Z., Thiel, W. & Thiel, W. Chiral pathways and periodic decay in cis-azobenzene photodynamics. J. Phys. Chem. Lett. 2, 1506–1509 (2011).

Article 
CAS 

Google Scholar
 

Wang, Y.-T. et al. Photoisomerization of arylazopyrazole photoswitches: stereospecific excited-state relaxation. Angew. Chem. Int. Ed. 55, 14009–14013 (2016).

Article 
CAS 

Google Scholar
 

Aleotti, F. et al. Multidimensional potential energy surfaces resolved at the RASPT2 level for accurate photoinduced isomerization dynamics of azobenzene. J. Chem. Theory Comput. 15, 6813–6823 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Nenov, A. et al. UV-light-induced vibrational coherences: the key to understand Kasha rule violation in trans-azobenzene. J. Phys. Chem. Lett. 9, 1534–1541 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Casellas, J., Bearpark, M. J. & Reguero, M. Excited-state decay in the photoisomerization of azobenzene: a new balance between mechanisms. ChemPhysChem 17, 3068–3079 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Moghaddam, K. G., Giudetti, G., Sipma, W. & Faraji, S. Theoretical insights into the effect of size and substitution patterns of azobenzene derivatives on the DNA G-quadruplex. Phys. Chem. Chem. Phys. 22, 26944–26954 (2020).

Article 

Google Scholar
 

Vela, S., Krüger, C. & Corminboeuf, C. Exploring chemical space in the search for improved azoheteroarene-based photoswitches. Phys. Chem. Chem. Phys. 21, 20782–20790 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Corra, S. et al. Kinetic and energetic insights into the dissipative non-equilibrium operation of an autonomous light-powered supramolecular pump. Nat. Nanotechnol. 17, 746–751 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Sangchai, T., Al Shehimy, S., Penocchio, E. & Ragazzon, G. Artificial molecular ratchets: tools enabling endergonic processes. Angew. Chem. Int. Ed. 62, e202309501 (2023).

Article 
CAS 

Google Scholar
 

Falivene, L. et al. Towards the online computer-aided design of catalytic pockets. Nat. Chem. 11, 872–879 (2019).

Article 
CAS 
PubMed 

Google Scholar
Â