Strekalov, D., Sergienko, A., Klyshko, D. & Shih, Y. Observation of two-photon “ghost” interference and diffraction. Phys. Rev. Lett. 74, 3600 (1995).
Pittman, T. B., Shih, Y., Strekalov, D. & Sergienko, A. V. Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 52, R3429 (1995). This work is one of the earliest demonstrations that spatial correlations in entangled photon pairs can be used to form an image, establishing the experimental foundation for what later became known as quantum ghost imaging.
Pittman, T. et al. Two-photon geometric optics. Phys. Rev. A 53, 2804 (1996).
Bennink, R. S., Bentley, S. J., Boyd, R. W. & Howell, J. C. Quantum and classical coincidence imaging. Phys. Rev. Lett. 92, 033601 (2004).
Gatti, A., Brambilla, E., Bache, M. & Lugiato, L. A. Correlated imaging, quantum and classical. Phys. Rev. A 70, 013802 (2004). This paper establishes a theoretical framework for correlated light imaging, clarifying the connections and distinctions between quantum and classical schemes.
Jedrkiewicz, O. et al. Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion. Phys. Rev. Lett. 93, 243601 (2004).
Morris, P. A., Aspden, R. S., Bell, J. E., Boyd, R. W. & Padgett, M. J. Imaging with a small number of photons. Nat. Commun. 6, 5913 (2015).
Gatti, A., Brambilla, E., Bache, M. & Lugiato, L. A. Ghost imaging with thermal light: comparing entanglement and classical correlation. Phys. Rev. Lett. 93, 093602 (2004).
Ferri, F. et al. High-resolution ghost image and ghost diffraction experiments with thermal light. Phys. Rev. Lett. 94, 183602 (2005).
Valencia, A., Scarcelli, G., D’Angelo, M. & Shih, Y. Two-photon imaging with thermal light. Phys. Rev. Lett. 94, 063601 (2005).
Aspden, R. S., Tasca, D. S., Boyd, R. W. & Padgett, M. J. EPR-based ghost imaging using a single-photon-sensitive camera. New J. Phys. 15, 073032 (2013). This work demonstrates Einstein–Podolsky–Rosen-based ghost imaging, showing that imaging with position correlations yields an upright image, whereas momentum correlations produce an inverted image, in direct analogy with classical lens systems.
Meyers, R., Deacon, K. S. & Shih, Y. Ghost-imaging experiment by measuring reflected photons. Phys. Rev. A 77, 041801 (2008).
Malik, M., Magaña-Loaiza, O. S. & Boyd, R. W. Quantum-secured imaging. Appl. Phys. Lett. 101, 241103 (2012).
Aspden, R. S. et al. Photon-sparse microscopy: visible light imaging using infrared illumination. Optica 2, 1049–1052 (2015).
Lloyd, S. Enhanced sensitivity of photodetection via quantum illumination. Science 321, 1463–1465 (2008).
Brida, G., Genovese, M. & Ruo Berchera, I. Experimental realization of sub-shot-noise quantum imaging. Nat. Photonics 4, 227–230 (2010). This work presents an experimental realization of sub-shot-noise imaging, providing a clear demonstration of the potential for quantum advantage in signal-to-noise ratio.
Defienne, H., Reichert, M., Fleischer, J. W. & Faccio, D. Quantum image distillation. Sci. Adv. 5, eaax0307 (2019).
Gregory, T., Moreau, P.-A., Toninelli, E. & Padgett, M. J. Imaging through noise with quantum illumination. Sci. Adv. 6, eaay2652 (2020).
Johnson, S., Rarity, J. & Padgett, M. Transmission of quantum-secured images. Sci. Rep. 14, 11579 (2024).
D’Angelo, M., Chekhova, M. V. & Shih, Y. Two-photon diffraction and quantum lithography. Phys. Rev. Lett. 87, 013602 (2001).
Tsang, M. Quantum imaging beyond the diffraction limit by optical centroid measurements. Phys. Rev. Lett. 102, 253601 (2009).
Toninelli, E. et al. Resolution-enhanced quantum imaging by centroid estimation of biphotons. Optica 6, 347–353 (2019).
Cameron, P. et al. Adaptive optical imaging with entangled photons. Science 383, 1142–1148 (2024). This study demonstrates adaptive optical imaging using entangled photons, showing how spatial correlations between photon pairs can be utilized to correct aberrations.
Lemos, G. B. et al. Quantum imaging with undetected photons. Nature 512, 409–412 (2014). This study introduces quantum imaging with undetected photons, showing that objects can be imaged at one wavelength while only detecting photons at a different wavelength, using interference between nonlinear crystals.
Chekhova, M. & Ou, Z. Nonlinear interferometers in quantum optics. Adv. Opt. Photonics 8, 104–155 (2016).
Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693 (1981).
Zou, X. Y., Wang, L. J. & Mandel, L. Induced coherence and indistinguishability in optical interference. Phys. Rev. Lett. 67, 318–321 (1991).
Wang, L. J., Zou, X. Y. & Mandel, L. Induced coherence without induced emission. Phys. Rev. A 44, 4614–4622 (1991).
Kviatkovsky, I., Chrzanowski, H. M., Avery, E. G., Bartolomaeus, H. & Ramelow, S. Microscopy with undetected photons in the mid-infrared. Sci. Adv. 6, eabd0264 (2020). This study extends undetected photon imaging to the mid-IR, demonstrating its applicability to microscopy with label-free molecular contrast, while relying solely on visible-wavelength detection.
Brambilla, E., Gatti, A., Bache, M. & Lugiato, L. A. Simultaneous near-field and far-field spatial quantum correlations in the high-gain regime of parametric down-conversion. Phys. Rev. A 69, 023802 (2004).
Moreau, P.-A. et al. Resolution limits of quantum ghost imaging. Opt. Express 26, 7528–7536 (2018).
Boyd, R. W. Nonlinear Optics 4th edn (Academic, 2020).
Schneeloch, J. & Howell, J. C. Introduction to the transverse spatial correlations in spontaneous parametric down-conversion through the biphoton birth zone. J. Opt. 18, 053501 (2016).
Kviatkovsky, I., Chrzanowski, H. M. & Ramelow, S. Mid-infrared microscopy via position correlations of undetected photons. Opt. Express 30, 5916–5925 (2022).
Howell, J. C., Bennink, R. S., Bentley, S. J. & Boyd, R. W. Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. Phys. Rev. Lett. 92, 210403 (2004). This study provides one of the clearest experimental demonstrations of the Einstein–Podolsky–Rosen paradox using position-entangled and momentum-entangled photon pairs generated by SPDC.
Jost, B. M., Sergienko, A. V., Abouraddy, A. F., Saleh, B. E. & Teich, M. C. Spatial correlations of spontaneously down-converted photon pairs detected with a single-photon-sensitive CCD camera. Opt. Express 3, 81–88 (1998).
Fickler, R., Krenn, M., Lapkiewicz, R., Ramelow, S. & Zeilinger, A. Real-time imaging of quantum entanglement. Sci. Rep. 3, 1914 (2013).
Aspden, R. S., Padgett, M. J. & Spalding, G. C. Video recording true single-photon double-slit interference. Am. J. Phys. 84, 671–677 (2016).
Zhang, L., Neves, L., Lundeen, J. S. & Walmsley, I. A. A characterization of the single-photon sensitivity of an electron multiplying charge-coupled device. J. Phys. B At. Mol. Opt. Phys. 42, 114011 (2009).
Moreau, P.-A., Devaux, F. & Lantz, E. Einstein-Podolsky-Rosen paradox in twin images. Phys. Rev. Lett. 113, 160401 (2014).
Edgar, M. P. et al. Imaging high-dimensional spatial entanglement with a camera. Nat. Commun. 3, 984 (2012).
Gregory, T., Moreau, P.-A., Mekhail, S., Wolley, O. & Padgett, M. Noise rejection through an improved quantum illumination protocol. Sci. Rep. 11, 21841 (2021).
Lantz, E., Blanchet, J.-L., Furfaro, L. & Devaux, F. Multi-imaging and Bayesian estimation for photon counting with EMCCDs. Mon. Not. R. Astron. Soc. 386, 2262–2270 (2008).
Roberts, K., Wolley, O., Gregory, T. & Padgett, M. A comparison between the measurement of quantum spatial correlations using qCMOS photon-resolving and electron multiplying CCD camera technologies. Sci. Rep. 14, 14687 (2024).
Wolley, O., Gregory, T., Beer, S., Higuchi, T. & Padgett, M. Quantum imaging with a photon counting camera. Sci. Rep. 12, 8286 (2022).
Portaluppi, D., Conca, E. & Villa, F. 32 × 32 CMOS SPAD imager for gated imaging, photon timing, and photon coincidence. IEEE J. Sel. Top. Quantum Electron. 24, 1–6 (2018).
Ulku, A. C. et al. A 512 × 512 SPAD image sensor with integrated gating for widefield FLIM. IEEE J. Sel. Top. Quantum Electron. 25, 1–12 (2019).
Henderson, R. K. et al. A 192 × 128 time correlated SPAD image sensor in 40-nm CMOS technology. IEEE J. Solid-State Circuits 54, 1907–1916 (2019).
Ndagano, B. et al. Imaging and certifying high-dimensional entanglement with a single-photon avalanche diode camera. npj Quantum Inf. 6, 94 (2020).
Hadfield, R. H. et al. Single-photon detection for long-range imaging and sensing. Optica 10, 1124–1141 (2023).
Morozov, D. V., Casaburi, A. & Hadfield, R. H. Superconducting photon detectors. Contemp. Phys. 62, 69–91 (2021).
Couteau, C. Spontaneous parametric down-conversion. Contemp. Phys. 59, 291–304 (2018).
Boeuf, N. et al. Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals. Opt. Eng. 39, 1016–1024 (2000).
Morgan, R. A. & Hopf, F. A. Measurement of the temperature tuning coefficient of lithium niobate using nonlinear optical interferometry. Appl. Opt. 25, 3011_1–3013 (1986).
Shen, Y. R. The Principles of Nonlinear Optics (Wiley, 1984).
Klyshko, D. A simple method of preparing pure states of an optical field, of implementing the Einstein–Podolsky–Rosen experiment, and of demonstrating the complementarity principle. Sov. Phys. Usp. 31, 74 (1988).
Shapiro, J. H. & Boyd, R. W. The physics of ghost imaging. Quantum Inf. Process. 11, 949–993 (2012).
D’Angelo, M., Valencia, A., Rubin, M. H. & Shih, Y. Resolution of quantum and classical ghost imaging. Phys. Rev. A 72, 013810 (2005).
Goodman, J. W. Introduction to Fourier Optics 3rd edn (Roberts and Company, 2005).
Tasca, D. et al. The influence of non-imaging detector design on heralded ghost-imaging and ghost-diffraction examined using a triggered ICCD camera. Opt. Express 21, 30460–30473 (2013).
Sheppard, C. J., Mehta, S. B. & Heintzmann, R. Superresolution by image scanning microscopy using pixel reassignment. Opt. Lett. 38, 2889–2892 (2013).
Zhang, Y. et al. Interaction-free ghost-imaging of structured objects. Opt. Express 27, 2212–2224 (2019).
Moodley, C. & Forbes, A. All-digital quantum ghost imaging: tutorial. J. Opt. Soc. Am. B 40, 3073–3095 (2023).
Nape, I., Sephton, B., Ornelas, P., Moodley, C. & Forbes, A. Quantum structured light in high dimensions. APL Photonics 8, 051101 (2023).
Boudoux, C. Fundamentals of Biomedical Optics (Blurb, 2023).
Rubin, M. H. & Shih, Y. Resolution of ghost imaging for nondegenerate spontaneous parametric down-conversion. Phys. Rev. A 78, 033836 (2008).
Moreau, P.-A. et al. Demonstrating an absolute quantum advantage in direct absorption measurement. Sci. Rep. 7, 6256 (2017).
Hong, C.-K., Ou, Z.-Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044 (1987).
Ndagano, B. et al. Quantum microscopy based on Hong–Ou–Mandel interference. Nat. Photonics 16, 384–389 (2022).
Pepe, F. V., Di Lena, F., Garuccio, A., Scarcelli, G. & D’Angelo, M. Correlation plenoptic imaging with entangled photons. Technologies 4, 17 (2016).
Zhang, Y., England, D., Orth, A., Karimi, E. & Sussman, B. Quantum light-field microscopy for volumetric imaging with extreme depth of field. Phys. Rev. Appl. 21, 024029 (2024). This work demonstrates an emerging use of photon-pair correlations for light-field microscopy, taking advantage of advances in time-resolved detection to access both position and momentum information, and achieve volumetric imaging.
Yan, F. & Venegas-Andraca, S. E. Lessons from twenty years of quantum image processing. ACM Trans. Quantum Comput. 6, 1–29 (2025).
Marks, R. J. II Handbook of Fourier Analysis & Its Applications (Oxford Univ. Press, 2009).
Zerom, P., Chan, K. W. C., Howell, J. C. & Boyd, R. W. Entangled-photon compressive ghost imaging. Phys. Rev. A 84, 061804 (2011).
Duarte, M. F. et al. Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 25, 83–91 (2008).
Rodríguez-Fajardo, V., Pinnell, J. & Forbes, A. Towards time-efficient ghost imaging. J. Mod. Opt. 67, 1176–1183 (2020).
Nothlawala, F., Moodley, C., Gounden, N., Nape, I. & Forbes, A. Quantum ghost imaging by sparse spatial mode reconstruction. Adv. Quantum Technol. 8, 2400577 (2025). This work demonstrates that imaging time can be reduced by orders of magnitude by shifting from the pixel basis to a spatial mode basis, matching object symmetry with basis symmetry.
Ferri, F., Magatti, D., Lugiato, L. & Gatti, A. Differential ghost imaging. Phys. Rev. Lett. 104, 253603 (2010).
Losero, E. et al. Quantum differential ghost microscopy. Phys. Rev. A 100, 063818 (2019).
Luo, K.-H., Huang, B.-Q., Zheng, W.-M. & Wu, L.-A. Nonlocal imaging by conditional averaging of random reference measurements. Chin. Phys. Lett. 29, 074216 (2012).
Liu, H.-C., Yang, H., Xiong, J. & Zhang, S. Positive and negative ghost imaging. Phys. Rev. Appl. 12, 034019 (2019).
Sun, B., Welsh, S. S., Edgar, M. P., Shapiro, J. H. & Padgett, M. J. Normalized ghost imaging. Opt. Express 20, 16892–16901 (2012).
Moodley, C. & Forbes, A. Advances in quantum imaging with machine intelligence. Laser Photonics Rev. 18, 2300939 (2024).
Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006).
Lyu, M. et al. Deep-learning-based ghost imaging. Sci. Rep. 7, 17865 (2017).
Moodley, C., Sephton, B., Rodríguez-Fajardo, V. & Forbes, A. Deep learning early stopping for non-degenerate ghost imaging. Sci. Rep. 11, 8561 (2021).
Moodley, C. & Forbes, A. Super-resolved quantum ghost imaging. Sci. Rep. 12, 10346 (2022).
Li, L., Kumar, S., Sua, Y. M. & Huang, Y.-P. Noise-resilient single-pixel compressive sensing with single photon counting. Commun. Phys. 7, 110 (2024).
Wang, Y., Xia, H., Zhou, M., Xie, L. & He, W. A deep learning-based target recognition method for entangled optical quantum imaging system. IEEE Trans. Instrum. Meas. 72, 1–12 (2023).
Defienne, H. et al. Advances in quantum imaging. Nat. Photonics 18, 1024–1036 (2024).
Gilaberte Basset, M. et al. Perspectives for applications of quantum imaging. Laser Photonics Rev. 13, 1900097 (2019).
Moreau, P.-A., Toninelli, E., Gregory, T. & Padgett, M. J. Imaging with quantum states of light. Nat. Rev. Phys. 1, 367–380 (2019).
Ryan, D. P. et al. Infrared quantum ghost imaging of living and undisturbed plants. Optica 11, 1261–1267 (2024). This study demonstrates IR quantum ghost imaging of living plants under extremely low illumination, highlighting the potential of quantum imaging for studying light-sensitive biological samples.
Zhang, Y. et al. Quantum imaging of biological organisms through spatial and polarization entanglement. Sci. Adv. 10, eadk1495 (2024). This work shows quantum imaging of biological organisms using spatial and polarization entanglement, illustrating how multiple degrees of freedom can enhance contrast.
Brida, G. et al. Measurement of sub-shot-noise spatial correlations without background subtraction. Phys. Rev. Lett. 102, 213602 (2009).
Blanchet, J.-L., Devaux, F., Furfaro, L. & Lantz, E. Measurement of sub-shot-noise correlations of spatial fluctuations in the photon-counting regime. Phys. Rev. Lett. 101, 233604 (2008).
Nape, I. et al. Measuring dimensionality and purity of high-dimensional entangled states. Nat. Commun. 12, 5159 (2021).
Mukai, Y., Okamoto, R. & Takeuchi, S. Quantum Fourier-transform infrared spectroscopy in the fingerprint region. Opt. Express 30, 22624–22636 (2022).
Paterova, A. V., Toa, Z. S., Yang, H. & Krivitsky, L. A. Broadband quantum spectroscopy at the fingerprint mid-infrared region. ACS Photonics 9, 2151–2159 (2022).
Schunemann, P. G., Zawilski, K. T., Pomeranz, L. A., Creeden, D. J. & Budni, P. A. Advances in nonlinear optical crystals for mid-infrared coherent sources. J. Opt. Soc. Am. B 33, D36–D43 (2016).
Schunemann, P. G. New nonlinear crystals for ultrafast frequency conversion in the mid-infrared. In Proc. Ultrafast Optics 2023 — UFOXIII paper Th3.2 (Optica Publishing Group, 2023).
Xiao, Y. & Chen, W. Ghost diffraction in complex scattering media: principles and applications. Appl. Phys. Rev. 12, 021329 (2025).
Bina, M. et al. Backscattering differential ghost imaging in turbid media. Phys. Rev. Lett. 110, 083901 (2013).
Dixon, P. B. et al. Quantum ghost imaging through turbulence. Phys. Rev. A 83, 051803 (2011).
Defienne, H. et al. Pixel super-resolution with spatially entangled photons. Nat. Commun. 13, 3566 (2022).
Pearce, E. et al. Practical quantum imaging with undetected photons. Opt. Contin. 2, 2386–2397 (2023).
Rizvi, S., Cao, J., Zhang, K. & Hao, Q. Deepghost: real-time computational ghost imaging via deep learning. Sci. Rep. 10, 11400 (2020).
Li, F., Sun, Y. & Zhang, X. Deep-learning-based quantum imaging using NOON states. J. Phys. Commun. 6, 035005 (2022).
Moodley, C., Ruget, A., Leach, J. & Forbes, A. Time-efficient object recognition in quantum ghost imaging. Adv. Quantum Technol. 6, 2200109 (2023).