Strekalov, D., Sergienko, A., Klyshko, D. & Shih, Y. Observation of two-photon “ghost” interference and diffraction. Phys. Rev. Lett. 74, 3600 (1995).

Article 
ADS 

Google Scholar
 

Pittman, T. B., Shih, Y., Strekalov, D. & Sergienko, A. V. Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 52, R3429 (1995). This work is one of the earliest demonstrations that spatial correlations in entangled photon pairs can be used to form an image, establishing the experimental foundation for what later became known as quantum ghost imaging.

Article 
ADS 

Google Scholar
 

Pittman, T. et al. Two-photon geometric optics. Phys. Rev. A 53, 2804 (1996).

Article 
ADS 

Google Scholar
 

Bennink, R. S., Bentley, S. J., Boyd, R. W. & Howell, J. C. Quantum and classical coincidence imaging. Phys. Rev. Lett. 92, 033601 (2004).

Article 
ADS 

Google Scholar
 

Gatti, A., Brambilla, E., Bache, M. & Lugiato, L. A. Correlated imaging, quantum and classical. Phys. Rev. A 70, 013802 (2004). This paper establishes a theoretical framework for correlated light imaging, clarifying the connections and distinctions between quantum and classical schemes.

Article 
ADS 

Google Scholar
 

Jedrkiewicz, O. et al. Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion. Phys. Rev. Lett. 93, 243601 (2004).

Article 
ADS 

Google Scholar
 

Morris, P. A., Aspden, R. S., Bell, J. E., Boyd, R. W. & Padgett, M. J. Imaging with a small number of photons. Nat. Commun. 6, 5913 (2015).

Article 
ADS 

Google Scholar
 

Gatti, A., Brambilla, E., Bache, M. & Lugiato, L. A. Ghost imaging with thermal light: comparing entanglement and classical correlation. Phys. Rev. Lett. 93, 093602 (2004).

Article 
ADS 

Google Scholar
 

Ferri, F. et al. High-resolution ghost image and ghost diffraction experiments with thermal light. Phys. Rev. Lett. 94, 183602 (2005).

Article 
ADS 

Google Scholar
 

Valencia, A., Scarcelli, G., D’Angelo, M. & Shih, Y. Two-photon imaging with thermal light. Phys. Rev. Lett. 94, 063601 (2005).

Article 
ADS 

Google Scholar
 

Aspden, R. S., Tasca, D. S., Boyd, R. W. & Padgett, M. J. EPR-based ghost imaging using a single-photon-sensitive camera. New J. Phys. 15, 073032 (2013). This work demonstrates Einstein–Podolsky–Rosen-based ghost imaging, showing that imaging with position correlations yields an upright image, whereas momentum correlations produce an inverted image, in direct analogy with classical lens systems.

Article 
ADS 

Google Scholar
 

Meyers, R., Deacon, K. S. & Shih, Y. Ghost-imaging experiment by measuring reflected photons. Phys. Rev. A 77, 041801 (2008).

Article 
ADS 

Google Scholar
 

Malik, M., Magaña-Loaiza, O. S. & Boyd, R. W. Quantum-secured imaging. Appl. Phys. Lett. 101, 241103 (2012).

Article 
ADS 

Google Scholar
 

Aspden, R. S. et al. Photon-sparse microscopy: visible light imaging using infrared illumination. Optica 2, 1049–1052 (2015).

Article 
ADS 

Google Scholar
 

Lloyd, S. Enhanced sensitivity of photodetection via quantum illumination. Science 321, 1463–1465 (2008).

Article 
ADS 

Google Scholar
 

Brida, G., Genovese, M. & Ruo Berchera, I. Experimental realization of sub-shot-noise quantum imaging. Nat. Photonics 4, 227–230 (2010). This work presents an experimental realization of sub-shot-noise imaging, providing a clear demonstration of the potential for quantum advantage in signal-to-noise ratio.

Article 
ADS 

Google Scholar
 

Defienne, H., Reichert, M., Fleischer, J. W. & Faccio, D. Quantum image distillation. Sci. Adv. 5, eaax0307 (2019).

Article 
ADS 

Google Scholar
 

Gregory, T., Moreau, P.-A., Toninelli, E. & Padgett, M. J. Imaging through noise with quantum illumination. Sci. Adv. 6, eaay2652 (2020).

Article 
ADS 

Google Scholar
 

Johnson, S., Rarity, J. & Padgett, M. Transmission of quantum-secured images. Sci. Rep. 14, 11579 (2024).

Article 
ADS 

Google Scholar
 

D’Angelo, M., Chekhova, M. V. & Shih, Y. Two-photon diffraction and quantum lithography. Phys. Rev. Lett. 87, 013602 (2001).

Article 
ADS 

Google Scholar
 

Tsang, M. Quantum imaging beyond the diffraction limit by optical centroid measurements. Phys. Rev. Lett. 102, 253601 (2009).

Article 
ADS 

Google Scholar
 

Toninelli, E. et al. Resolution-enhanced quantum imaging by centroid estimation of biphotons. Optica 6, 347–353 (2019).

Article 
ADS 

Google Scholar
 

Cameron, P. et al. Adaptive optical imaging with entangled photons. Science 383, 1142–1148 (2024). This study demonstrates adaptive optical imaging using entangled photons, showing how spatial correlations between photon pairs can be utilized to correct aberrations.

Article 
ADS 
MathSciNet 

Google Scholar
 

Lemos, G. B. et al. Quantum imaging with undetected photons. Nature 512, 409–412 (2014). This study introduces quantum imaging with undetected photons, showing that objects can be imaged at one wavelength while only detecting photons at a different wavelength, using interference between nonlinear crystals.

Article 
ADS 

Google Scholar
 

Chekhova, M. & Ou, Z. Nonlinear interferometers in quantum optics. Adv. Opt. Photonics 8, 104–155 (2016).

Article 
ADS 

Google Scholar
 

Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693 (1981).

Article 
ADS 

Google Scholar
 

Zou, X. Y., Wang, L. J. & Mandel, L. Induced coherence and indistinguishability in optical interference. Phys. Rev. Lett. 67, 318–321 (1991).

Article 
ADS 

Google Scholar
 

Wang, L. J., Zou, X. Y. & Mandel, L. Induced coherence without induced emission. Phys. Rev. A 44, 4614–4622 (1991).

Article 
ADS 

Google Scholar
 

Kviatkovsky, I., Chrzanowski, H. M., Avery, E. G., Bartolomaeus, H. & Ramelow, S. Microscopy with undetected photons in the mid-infrared. Sci. Adv. 6, eabd0264 (2020). This study extends undetected photon imaging to the mid-IR, demonstrating its applicability to microscopy with label-free molecular contrast, while relying solely on visible-wavelength detection.

Article 
ADS 

Google Scholar
 

Brambilla, E., Gatti, A., Bache, M. & Lugiato, L. A. Simultaneous near-field and far-field spatial quantum correlations in the high-gain regime of parametric down-conversion. Phys. Rev. A 69, 023802 (2004).

Article 
ADS 

Google Scholar
 

Moreau, P.-A. et al. Resolution limits of quantum ghost imaging. Opt. Express 26, 7528–7536 (2018).

Article 
ADS 

Google Scholar
 

Boyd, R. W. Nonlinear Optics 4th edn (Academic, 2020).

Schneeloch, J. & Howell, J. C. Introduction to the transverse spatial correlations in spontaneous parametric down-conversion through the biphoton birth zone. J. Opt. 18, 053501 (2016).

Article 
ADS 

Google Scholar
 

Kviatkovsky, I., Chrzanowski, H. M. & Ramelow, S. Mid-infrared microscopy via position correlations of undetected photons. Opt. Express 30, 5916–5925 (2022).

Article 
ADS 

Google Scholar
 

Howell, J. C., Bennink, R. S., Bentley, S. J. & Boyd, R. W. Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. Phys. Rev. Lett. 92, 210403 (2004). This study provides one of the clearest experimental demonstrations of the Einstein–Podolsky–Rosen paradox using position-entangled and momentum-entangled photon pairs generated by SPDC.

Article 
ADS 

Google Scholar
 

Jost, B. M., Sergienko, A. V., Abouraddy, A. F., Saleh, B. E. & Teich, M. C. Spatial correlations of spontaneously down-converted photon pairs detected with a single-photon-sensitive CCD camera. Opt. Express 3, 81–88 (1998).

Article 
ADS 

Google Scholar
 

Fickler, R., Krenn, M., Lapkiewicz, R., Ramelow, S. & Zeilinger, A. Real-time imaging of quantum entanglement. Sci. Rep. 3, 1914 (2013).

Article 
ADS 

Google Scholar
 

Aspden, R. S., Padgett, M. J. & Spalding, G. C. Video recording true single-photon double-slit interference. Am. J. Phys. 84, 671–677 (2016).

Article 
ADS 

Google Scholar
 

Zhang, L., Neves, L., Lundeen, J. S. & Walmsley, I. A. A characterization of the single-photon sensitivity of an electron multiplying charge-coupled device. J. Phys. B At. Mol. Opt. Phys. 42, 114011 (2009).

Article 
ADS 

Google Scholar
 

Moreau, P.-A., Devaux, F. & Lantz, E. Einstein-Podolsky-Rosen paradox in twin images. Phys. Rev. Lett. 113, 160401 (2014).

Article 
ADS 

Google Scholar
 

Edgar, M. P. et al. Imaging high-dimensional spatial entanglement with a camera. Nat. Commun. 3, 984 (2012).

Article 
ADS 

Google Scholar
 

Gregory, T., Moreau, P.-A., Mekhail, S., Wolley, O. & Padgett, M. Noise rejection through an improved quantum illumination protocol. Sci. Rep. 11, 21841 (2021).

Article 
ADS 

Google Scholar
 

Lantz, E., Blanchet, J.-L., Furfaro, L. & Devaux, F. Multi-imaging and Bayesian estimation for photon counting with EMCCDs. Mon. Not. R. Astron. Soc. 386, 2262–2270 (2008).

Article 
ADS 

Google Scholar
 

Roberts, K., Wolley, O., Gregory, T. & Padgett, M. A comparison between the measurement of quantum spatial correlations using qCMOS photon-resolving and electron multiplying CCD camera technologies. Sci. Rep. 14, 14687 (2024).

Article 
ADS 

Google Scholar
 

Wolley, O., Gregory, T., Beer, S., Higuchi, T. & Padgett, M. Quantum imaging with a photon counting camera. Sci. Rep. 12, 8286 (2022).

Article 
ADS 

Google Scholar
 

Portaluppi, D., Conca, E. & Villa, F. 32 × 32 CMOS SPAD imager for gated imaging, photon timing, and photon coincidence. IEEE J. Sel. Top. Quantum Electron. 24, 1–6 (2018).

Article 

Google Scholar
 

Ulku, A. C. et al. A 512 × 512 SPAD image sensor with integrated gating for widefield FLIM. IEEE J. Sel. Top. Quantum Electron. 25, 1–12 (2019).

Article 

Google Scholar
 

Henderson, R. K. et al. A 192 × 128 time correlated SPAD image sensor in 40-nm CMOS technology. IEEE J. Solid-State Circuits 54, 1907–1916 (2019).

Article 
ADS 

Google Scholar
 

Ndagano, B. et al. Imaging and certifying high-dimensional entanglement with a single-photon avalanche diode camera. npj Quantum Inf. 6, 94 (2020).

Article 
ADS 

Google Scholar
 

Hadfield, R. H. et al. Single-photon detection for long-range imaging and sensing. Optica 10, 1124–1141 (2023).

Article 
ADS 

Google Scholar
 

Morozov, D. V., Casaburi, A. & Hadfield, R. H. Superconducting photon detectors. Contemp. Phys. 62, 69–91 (2021).

Article 
ADS 

Google Scholar
 

Couteau, C. Spontaneous parametric down-conversion. Contemp. Phys. 59, 291–304 (2018).

Article 
ADS 

Google Scholar
 

Boeuf, N. et al. Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals. Opt. Eng. 39, 1016–1024 (2000).

Article 
ADS 

Google Scholar
 

Morgan, R. A. & Hopf, F. A. Measurement of the temperature tuning coefficient of lithium niobate using nonlinear optical interferometry. Appl. Opt. 25, 3011_1–3013 (1986).

Article 

Google Scholar
 

Shen, Y. R. The Principles of Nonlinear Optics (Wiley, 1984).

Klyshko, D. A simple method of preparing pure states of an optical field, of implementing the Einstein–Podolsky–Rosen experiment, and of demonstrating the complementarity principle. Sov. Phys. Usp. 31, 74 (1988).

Article 
ADS 

Google Scholar
 

Shapiro, J. H. & Boyd, R. W. The physics of ghost imaging. Quantum Inf. Process. 11, 949–993 (2012).

Article 
ADS 

Google Scholar
 

D’Angelo, M., Valencia, A., Rubin, M. H. & Shih, Y. Resolution of quantum and classical ghost imaging. Phys. Rev. A 72, 013810 (2005).

Article 
ADS 

Google Scholar
 

Goodman, J. W. Introduction to Fourier Optics 3rd edn (Roberts and Company, 2005).

Tasca, D. et al. The influence of non-imaging detector design on heralded ghost-imaging and ghost-diffraction examined using a triggered ICCD camera. Opt. Express 21, 30460–30473 (2013).

Article 
ADS 

Google Scholar
 

Sheppard, C. J., Mehta, S. B. & Heintzmann, R. Superresolution by image scanning microscopy using pixel reassignment. Opt. Lett. 38, 2889–2892 (2013).

Article 
ADS 

Google Scholar
 

Zhang, Y. et al. Interaction-free ghost-imaging of structured objects. Opt. Express 27, 2212–2224 (2019).

Article 
ADS 

Google Scholar
 

Moodley, C. & Forbes, A. All-digital quantum ghost imaging: tutorial. J. Opt. Soc. Am. B 40, 3073–3095 (2023).

Article 
ADS 

Google Scholar
 

Nape, I., Sephton, B., Ornelas, P., Moodley, C. & Forbes, A. Quantum structured light in high dimensions. APL Photonics 8, 051101 (2023).

Article 
ADS 

Google Scholar
 

Boudoux, C. Fundamentals of Biomedical Optics (Blurb, 2023).

Rubin, M. H. & Shih, Y. Resolution of ghost imaging for nondegenerate spontaneous parametric down-conversion. Phys. Rev. A 78, 033836 (2008).

Article 
ADS 

Google Scholar
 

Moreau, P.-A. et al. Demonstrating an absolute quantum advantage in direct absorption measurement. Sci. Rep. 7, 6256 (2017).

Article 
ADS 

Google Scholar
 

Hong, C.-K., Ou, Z.-Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044 (1987).

Article 
ADS 

Google Scholar
 

Ndagano, B. et al. Quantum microscopy based on Hong–Ou–Mandel interference. Nat. Photonics 16, 384–389 (2022).

Article 
ADS 

Google Scholar
 

Pepe, F. V., Di Lena, F., Garuccio, A., Scarcelli, G. & D’Angelo, M. Correlation plenoptic imaging with entangled photons. Technologies 4, 17 (2016).

Article 

Google Scholar
 

Zhang, Y., England, D., Orth, A., Karimi, E. & Sussman, B. Quantum light-field microscopy for volumetric imaging with extreme depth of field. Phys. Rev. Appl. 21, 024029 (2024). This work demonstrates an emerging use of photon-pair correlations for light-field microscopy, taking advantage of advances in time-resolved detection to access both position and momentum information, and achieve volumetric imaging.

Article 
ADS 

Google Scholar
 

Yan, F. & Venegas-Andraca, S. E. Lessons from twenty years of quantum image processing. ACM Trans. Quantum Comput. 6, 1–29 (2025).

Article 
MathSciNet 

Google Scholar
 

Marks, R. J. II Handbook of Fourier Analysis & Its Applications (Oxford Univ. Press, 2009).

Zerom, P., Chan, K. W. C., Howell, J. C. & Boyd, R. W. Entangled-photon compressive ghost imaging. Phys. Rev. A 84, 061804 (2011).

Article 
ADS 

Google Scholar
 

Duarte, M. F. et al. Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 25, 83–91 (2008).

Article 
ADS 

Google Scholar
 

Rodríguez-Fajardo, V., Pinnell, J. & Forbes, A. Towards time-efficient ghost imaging. J. Mod. Opt. 67, 1176–1183 (2020).

Article 
ADS 

Google Scholar
 

Nothlawala, F., Moodley, C., Gounden, N., Nape, I. & Forbes, A. Quantum ghost imaging by sparse spatial mode reconstruction. Adv. Quantum Technol. 8, 2400577 (2025). This work demonstrates that imaging time can be reduced by orders of magnitude by shifting from the pixel basis to a spatial mode basis, matching object symmetry with basis symmetry.

Article 

Google Scholar
 

Ferri, F., Magatti, D., Lugiato, L. & Gatti, A. Differential ghost imaging. Phys. Rev. Lett. 104, 253603 (2010).

Article 
ADS 

Google Scholar
 

Losero, E. et al. Quantum differential ghost microscopy. Phys. Rev. A 100, 063818 (2019).

Article 
ADS 

Google Scholar
 

Luo, K.-H., Huang, B.-Q., Zheng, W.-M. & Wu, L.-A. Nonlocal imaging by conditional averaging of random reference measurements. Chin. Phys. Lett. 29, 074216 (2012).

Article 
ADS 

Google Scholar
 

Liu, H.-C., Yang, H., Xiong, J. & Zhang, S. Positive and negative ghost imaging. Phys. Rev. Appl. 12, 034019 (2019).

Article 
ADS 

Google Scholar
 

Sun, B., Welsh, S. S., Edgar, M. P., Shapiro, J. H. & Padgett, M. J. Normalized ghost imaging. Opt. Express 20, 16892–16901 (2012).

Article 
ADS 

Google Scholar
 

Moodley, C. & Forbes, A. Advances in quantum imaging with machine intelligence. Laser Photonics Rev. 18, 2300939 (2024).

Article 
ADS 

Google Scholar
 

Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006).

Article 
ADS 
MathSciNet 

Google Scholar
 

Lyu, M. et al. Deep-learning-based ghost imaging. Sci. Rep. 7, 17865 (2017).

Article 
ADS 

Google Scholar
 

Moodley, C., Sephton, B., Rodríguez-Fajardo, V. & Forbes, A. Deep learning early stopping for non-degenerate ghost imaging. Sci. Rep. 11, 8561 (2021).

Article 
ADS 

Google Scholar
 

Moodley, C. & Forbes, A. Super-resolved quantum ghost imaging. Sci. Rep. 12, 10346 (2022).

Article 
ADS 

Google Scholar
 

Li, L., Kumar, S., Sua, Y. M. & Huang, Y.-P. Noise-resilient single-pixel compressive sensing with single photon counting. Commun. Phys. 7, 110 (2024).

Article 

Google Scholar
 

Wang, Y., Xia, H., Zhou, M., Xie, L. & He, W. A deep learning-based target recognition method for entangled optical quantum imaging system. IEEE Trans. Instrum. Meas. 72, 1–12 (2023).


Google Scholar
 

Defienne, H. et al. Advances in quantum imaging. Nat. Photonics 18, 1024–1036 (2024).

Article 
ADS 

Google Scholar
 

Gilaberte Basset, M. et al. Perspectives for applications of quantum imaging. Laser Photonics Rev. 13, 1900097 (2019).

Article 
ADS 

Google Scholar
 

Moreau, P.-A., Toninelli, E., Gregory, T. & Padgett, M. J. Imaging with quantum states of light. Nat. Rev. Phys. 1, 367–380 (2019).

Article 

Google Scholar
 

Ryan, D. P. et al. Infrared quantum ghost imaging of living and undisturbed plants. Optica 11, 1261–1267 (2024). This study demonstrates IR quantum ghost imaging of living plants under extremely low illumination, highlighting the potential of quantum imaging for studying light-sensitive biological samples.

Article 
ADS 

Google Scholar
 

Zhang, Y. et al. Quantum imaging of biological organisms through spatial and polarization entanglement. Sci. Adv. 10, eadk1495 (2024). This work shows quantum imaging of biological organisms using spatial and polarization entanglement, illustrating how multiple degrees of freedom can enhance contrast.

Article 

Google Scholar
 

Brida, G. et al. Measurement of sub-shot-noise spatial correlations without background subtraction. Phys. Rev. Lett. 102, 213602 (2009).

Article 
ADS 

Google Scholar
 

Blanchet, J.-L., Devaux, F., Furfaro, L. & Lantz, E. Measurement of sub-shot-noise correlations of spatial fluctuations in the photon-counting regime. Phys. Rev. Lett. 101, 233604 (2008).

Article 
ADS 

Google Scholar
 

Nape, I. et al. Measuring dimensionality and purity of high-dimensional entangled states. Nat. Commun. 12, 5159 (2021).

Article 
ADS 

Google Scholar
 

Mukai, Y., Okamoto, R. & Takeuchi, S. Quantum Fourier-transform infrared spectroscopy in the fingerprint region. Opt. Express 30, 22624–22636 (2022).

Article 
ADS 

Google Scholar
 

Paterova, A. V., Toa, Z. S., Yang, H. & Krivitsky, L. A. Broadband quantum spectroscopy at the fingerprint mid-infrared region. ACS Photonics 9, 2151–2159 (2022).

Article 

Google Scholar
 

Schunemann, P. G., Zawilski, K. T., Pomeranz, L. A., Creeden, D. J. & Budni, P. A. Advances in nonlinear optical crystals for mid-infrared coherent sources. J. Opt. Soc. Am. B 33, D36–D43 (2016).

Article 

Google Scholar
 

Schunemann, P. G. New nonlinear crystals for ultrafast frequency conversion in the mid-infrared. In Proc. Ultrafast Optics 2023 — UFOXIII paper Th3.2 (Optica Publishing Group, 2023).

Xiao, Y. & Chen, W. Ghost diffraction in complex scattering media: principles and applications. Appl. Phys. Rev. 12, 021329 (2025).

Article 
ADS 

Google Scholar
 

Bina, M. et al. Backscattering differential ghost imaging in turbid media. Phys. Rev. Lett. 110, 083901 (2013).

Article 
ADS 

Google Scholar
 

Dixon, P. B. et al. Quantum ghost imaging through turbulence. Phys. Rev. A 83, 051803 (2011).

Article 
ADS 

Google Scholar
 

Defienne, H. et al. Pixel super-resolution with spatially entangled photons. Nat. Commun. 13, 3566 (2022).

Article 
ADS 

Google Scholar
 

Pearce, E. et al. Practical quantum imaging with undetected photons. Opt. Contin. 2, 2386–2397 (2023).

Article 

Google Scholar
 

Rizvi, S., Cao, J., Zhang, K. & Hao, Q. Deepghost: real-time computational ghost imaging via deep learning. Sci. Rep. 10, 11400 (2020).

Article 

Google Scholar
 

Li, F., Sun, Y. & Zhang, X. Deep-learning-based quantum imaging using NOON states. J. Phys. Commun. 6, 035005 (2022).

Article 

Google Scholar
 

Moodley, C., Ruget, A., Leach, J. & Forbes, A. Time-efficient object recognition in quantum ghost imaging. Adv. Quantum Technol. 6, 2200109 (2023).

Article 

Google Scholar