Morlighem, M. et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat. Geosci. 13, 132–137 (2020).

Article 
CAS 

Google Scholar
 

IPCC. Special Report on the Ocean and Cryosphere in a Changing Climate (Cambridge Univ. Press, 2022).

Clark, P. U. et al. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat. Clim. Change 6, 360–369 (2016).

Article 

Google Scholar
 

Strauss, B. H., Kulp, S. A., Rasmussen, D. J. & Levermann, A. Unprecedented threats to cities from multi-century sea level rise. Environ. Res. Lett. 16, 114015 (2021).

Article 

Google Scholar
 

IPCC. Climate Change 2021: The Physical Science Basis (Cambridge Univ. Press, 2023).

Li, Q., England, M. H., Hogg, A. M., Rintoul, S. R. & Morrison, A. K. Abyssal ocean overturning slowdown and warming driven by Antarctic meltwater. Nature 615, 841–847 (2023).

Article 
CAS 

Google Scholar
 

Fogwill, C. J., Phipps, S. J., Turney, C. S. M. & Golledge, N. R. Sensitivity of the Southern Ocean to enhanced regional Antarctic ice sheet meltwater input. Earth’s Future 3, 317–329 (2015).

Article 

Google Scholar
 

Purkey, S. G. & Johnson, G. C. Warming of global abyssal and deep southern ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets. J. Clim. 23, 6336–6351 (2010).

Article 

Google Scholar
 

Purkey, S. G. & Johnson, G. C. Antarctic bottom water warming and freshening: contributions to sea level rise, ocean freshwater budgets, and global heat gain. J. Clim. 26, 6105–6122 (2013).

Article 

Google Scholar
 

Naish, T. et al. Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature 458, 322–328 (2009).

Article 
CAS 

Google Scholar
 

DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

Article 
CAS 

Google Scholar
 

Turney et al. Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica. Proc. Natl Acad. Sci. USA 117, 3996–4006 (2020).

Article 
CAS 

Google Scholar
 

Weber, M. E., Golledge, N. R., Fogwill, C. J., Turney, C. S. M. & Thomas, Z. A. Decadal-scale onset and termination of Antarctic ice-mass loss during the last deglaciation. Nat. Commun. 12, 6683 (2021).

Article 
CAS 

Google Scholar
 

Dutton, A. et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349, aaa4019 (2015).

Article 
CAS 

Google Scholar
 

Grant, G. R. et al. The amplitude and origin of sea-level variability during the Pliocene epoch. Nature 574, 237–241 (2019).

Article 
CAS 

Google Scholar
 

Golledge, N. R. et al. Retreat of the Antarctic Ice Sheet during the last interglaciation and implications for future change. Geophys. Res. Lett. 48, e2021GL094513 (2021).

Article 

Google Scholar
 

Clark, P. U. et al. Oceanic forcing of penultimate deglacial and last interglacial sea-level rise. Nature 577, 660–664 (2020).

Article 
CAS 

Google Scholar
 

Wilson et al. Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials. Nature 561, 383–386 (2018).

Article 
CAS 

Google Scholar
 

Blackburn, T. et al. Ice retreat in Wilkes Basin of East Antarctica during a warm interglacial. Nature 583, 554–559 (2020).

Article 
CAS 

Google Scholar
 

Iizuka, M. et al. Multiple episodes of ice loss from the Wilkes Subglacial Basin during the Last Interglacial. Nat. Commun. 14, 2129 (2023).

Article 
CAS 

Google Scholar
 

Golledge, N. R. et al. Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning. Nat. Commun. 5, 5107 (2014).

Article 
CAS 

Google Scholar
 

Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

Article 
CAS 

Google Scholar
 

McKay, D. I. A. et al. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science 377, eabn7950 (2022).

Article 
CAS 

Google Scholar
 

Pattyn, F. et al. The Greenland and Antarctic ice sheets under 1.5 °C global warming. Nat. Clim. Change 8, 1053–1061 (2018).

Article 

Google Scholar
 

Lenton, T. M. et al. (eds) The Global Tipping Points Report 2023 (Univ. of Exeter, 2023).

Rignot, E. et al. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proc. Natl Acad. Sci. USA 116, 1095–1103 (2019).

Article 
CAS 

Google Scholar
 

Otosaka et al. Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020. Earth Syst. Sci. Data 15, 1597–1616 (2023).

Article 

Google Scholar
 

Turner, J. et al. Atmosphere–ocean–ice interactions in the Amundsen Sea Embayment, West Antarctica. Rev. Geophys. 55, 235–276 (2017).

Article 

Google Scholar
 

Joughin, I., Shapero, D., Smith, B., Dutrieux, P. & Barham, M. Ice-shelf retreat drives recent Pine Island Glacier speedup. Sci. Adv. 7, eabg3080 (2021).

Article 

Google Scholar
 

Rydt, J. D., Reese, R., Paolo, F. S. & Gudmundsson, G. H. Drivers of Pine Island Glacier speed-up between 1996 and 2016. Cryosphere 15, 113–132 (2021).

Article 

Google Scholar
 

Shen, Q. et al. Recent high-resolution Antarctic ice velocity maps reveal increased mass loss in Wilkes Land, East Antarctica. Sci. Rep. 8, 4477 (2018).

Article 

Google Scholar
 

Frieler, K. et al. Consistent evidence of increasing Antarctic accumulation with warming. Nat. Clim. Change 5, 348–352 (2015).

Article 

Google Scholar
 

Palerme, C. et al. Evaluation of current and projected Antarctic precipitation in CMIP5 models. Clim. Dynam. 48, 225–239 (2017).

Article 

Google Scholar
 

Nicola, L., Notz, D. & Winkelmann, R. Revisiting temperature sensitivity: how does Antarctic precipitation change with temperature? Cryosphere 17, 2563–2583 (2023).

Article 

Google Scholar
 

Medley, B. & Thomas, E. R. Increased snowfall over the Antarctic Ice Sheet mitigated twentieth-century sea-level rise. Nat. Clim. Change 9, 34–39 (2019).

Article 
CAS 

Google Scholar
 

Rodehacke, C. B., Pfeiffer, M., Semmler, T., Gurses, Ö & Kleiner, T. Future sea level contribution from Antarctica inferred from CMIP5 model forcing and its dependence on precipitation ansatz. Earth Syst. Dynam. 11, 1153–1194 (2020).

Article 

Google Scholar
 

Coulon, V. et al. Disentangling the drivers of future Antarctic ice loss with a historically calibrated ice-sheet model. Cryosphere 18, 653–681 (2023).

Article 

Google Scholar
 

Seroussi, H. et al. Evolution of the Antarctic Ice Sheet over the next three centuries from an ISMIP6 model ensemble. Earth’s Future 12, e2024EF004561 (2024).

Article 

Google Scholar
 

Weertman, J. Stability of ice-age ice sheets. J. Geophys. Res. 66, 3783–3792 (1961).

Article 

Google Scholar
 

Levermann, A. & Winkelmann, R. A simple equation for the melt elevation feedback of ice sheets. Cryosphere 10, 1799–1807 (2016).

Article 

Google Scholar
 

Jakobs, C. L., Reijmer, C. H., van den Broeke, M. R., van de Berg, W. J. & van Wessem, J. M. Spatial variability of the snowmelt-albedo feedback in Antarctica. J. Geophys. Res. Earth Surface 126, e2020JF005696 (2021).

Article 

Google Scholar
 

Weertman, J. Stability of the junction of an ice sheet and an ice shelf. J. Glaciol. 13, 3–11 (1974).

Article 

Google Scholar
 

Schoof, C. Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res. https://doi.org/10.1029/2006jf000664 (2007).

Bassis, J. N. & Walker, C. C. Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice. Proc. R. Soc. A 468, 913–931 (2012).

Article 

Google Scholar
 

Pollard, D., DeConto, R. M. & Alley, R. B. Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure. Earth Planet. Sci. Lett. 412, 112–121 (2015).

Article 
CAS 

Google Scholar
 

Bronselaer, B. et al. Change in future climate due to Antarctic meltwater. Nature 564, 53–58 (2018).

Article 
CAS 

Google Scholar
 

Golledge, N. R. et al. Global environmental consequences of twenty-first-century ice-sheet melt. Nature 566, 65–72 (2019).

Article 
CAS 

Google Scholar
 

Fyke, J., Sergienko, O., Löfverström, M., Price, S. & Lenaerts, J. T. M. An overview of interactions and feedbacks between ice sheets and the earth system. Rev. Geophys. 56, 361–408 (2018).

Article 

Google Scholar
 

Garbe, J., Zeitz, M., Krebs-Kanzow, U. & Winkelmann, R. The evolution of future Antarctic surface melt using PISM-dEBM-simple. Cryosphere 17, 4571–4599 (2023).

Article 

Google Scholar
 

Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012).

Article 
CAS 

Google Scholar
 

Depoorter, M. A. et al. Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 502, 89–92 (2013).

Article 
CAS 

Google Scholar
 

Jenkins, A. et al. West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability. Nat. Geosci. 11, 733–738 (2018).

Article 
CAS 

Google Scholar
 

Holland, P. R., Bracegirdle, T. J., Dutrieux, P., Jenkins, A. & Steig, E. J. West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing. Nat. Geosci. 12, 718–724 (2019).

Article 
CAS 

Google Scholar
 

Greene, C. A., Gardner, A. S., Schlegel, N.-J. & Fraser, A. D. Antarctic calving loss rivals ice-shelf thinning. Nature 609, 948–953 (2022).

Article 
CAS 

Google Scholar
 

Joughin, I., Smith, B. E. & Medley, B. Marine Ice Sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science 344, 735–738 (2014).

Article 
CAS 

Google Scholar
 

Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H. & Scheuchl, B. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Lett. 41, 3502–3509 (2014).

Article 

Google Scholar
 

Favier, L. et al. Retreat of Pine Island Glacier controlled by marine ice-sheet instability. Nat. Clim. Change 4, 117–121 (2014).

Article 

Google Scholar
 

Mouginot, J., Rignot, E. & Scheuchl, B. Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophys. Res. Lett. 41, 1576–1584 (2014).

Article 

Google Scholar
 

Hill, E. A. et al. The stability of present-day Antarctic grounding lines—Part 1: No indication of marine ice sheet instability in the current geometry. Cryosphere 17, 3739–3759 (2023).

Article 

Google Scholar
 

Reese, R. et al. The stability of present-day Antarctic grounding lines—Part 2: Onset of irreversible retreat of Amundsen Sea glaciers under current climate on centennial timescales cannot be excluded. Cryosphere 17, 3761–3783 (2023).

Article 

Google Scholar
 

Mengel, M. & Levermann, A. Ice plug prevents irreversible discharge from East Antarctica. Nat. Clim. Change 4, 451–455 (2014).

Article 

Google Scholar
 

Golledge, N. R., Levy, R. H., McKay, R. M. & Naish, T. R. East Antarctic ice sheet most vulnerable to Weddell Sea warming. Geophys. Res. Lett. 44, 2343–2351 (2017).

Article 

Google Scholar
 

DeConto, R. M. et al. The Paris Climate Agreement and future sea-level rise from Antarctica. Nature 593, 83–89 (2021).

Article 
CAS 

Google Scholar
 

Edwards, T. L. et al. Revisiting Antarctic ice loss due to marine ice-cliff instability. Nature 566, 58–64 (2019).

Article 
CAS 

Google Scholar
 

Morlighem, M. et al. The West Antarctic Ice Sheet may not be vulnerable to marine ice cliff instability during the 21st century. Sci. Adv. 10, eado7794 (2024).

Article 

Google Scholar
 

Schlemm, T., Feldmann, J., Winkelmann, R. & Levermann, A. Stabilizing effect of mélange buttressing on the marine ice-cliff instability of the West Antarctic Ice Sheet. Cryosphere 16, 1979–1996 (2022).

Article 

Google Scholar
 

Colleoni, F. et al. Spatio-temporal variability of processes across Antarctic ice-bed–ocean interfaces. Nat. Commun. 9, 2289 (2018).

Article 

Google Scholar
 

Whitehouse, P. L., Gomez, N., King, M. A. & Wiens, D. A. Solid Earth change and the evolution of the Antarctic Ice Sheet. Nat. Commun. 10, 503 (2019).

Article 
CAS 

Google Scholar
 

Kriegler, E., Hall, J. W., Held, H., Dawson, R. & Schellnhuber, H. J. Imprecise probability assessment of tipping points in the climate system. Proc. Natl Acad. Sci. USA 106, 5041–5046 (2009).

Article 
CAS 

Google Scholar
 

Lenton, T. M. et al. Climate tipping points—too risky to bet against. Nature 575, 592–595 (2019).

Article 
CAS 

Google Scholar
 

Wunderling, N. et al. Climate tipping point interactions and cascades: a review. Earth Syst. Dynam. 15, 41–74 (2024).

Article 

Google Scholar
 

Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P. & Cooke, R. M. Ice sheet contributions to future sea-level rise from structured expert judgment. Proc. Natl Acad. Sci. USA 116, 11195–11200 (2019).

Article 
CAS 

Google Scholar
 

Levermann, A. et al. The multimillennial sea-level commitment of global warming. Proc. Natl Acad. Sci. USA 110, 13745–13750 (2013).

Article 
CAS 

Google Scholar
 

Golledge, N. R. et al. The multi-millennial Antarctic commitment to future sea-level rise. Nature 526, 421–425 (2015).

Article 
CAS 

Google Scholar
 

Klose, A. K., Coulon, V., Pattyn, F. & Winkelmann, R. The long-term sea-level commitment from Antarctica. Cryosphere 18, 4463–4492 (2024).

Article 

Google Scholar
 

Garbe, J., Albrecht, T., Levermann, A., Donges, J. F. & Winkelmann, R. The hysteresis of the Antarctic Ice Sheet. Nature 585, 538–544 (2020).

Article 
CAS 

Google Scholar
 

Bueler, E. & Brown, J. Shallow shelf approximation as a ‘sliding law’ in a thermomechanically coupled ice sheet model. J. Geophys. Res. 114, F03008 (2009).


Google Scholar
 

Winkelmann, R. et al. The Potsdam Parallel Ice Sheet Model (PISM-PIK)—Part 1: Model description. Cryosphere 5, 715–726 (2011).

Article 

Google Scholar
 

Rahmstorf, S. & England, M. H. Influence of Southern hemisphere winds on North Atlantic deep water flow. J. Phys. Oceanogr. 27, 2040–2054 (1997).

Article 

Google Scholar
 

Rahmstorf, S. et al. Thermohaline circulation hysteresis: a model intercomparison. Geophys. Res. Lett. https://doi.org/10.1029/2005gl023655 (2005).

Van Westen, R. M., Kliphuis, M. & Dijkstra, H. A. Physics-based early warning signal shows that AMOC is on tipping course. Sci. Adv. 10, eadk1189 (2024).

Article 

Google Scholar
 

Robinson, A., Calov, R. & Ganopolski, A. Multistability and critical thresholds of the Greenland ice sheet. Nat. Clim. Change 2, 429–432 (2012).

Article 

Google Scholar
 

Hanna, E. et al. Short- and long-term variability of the Antarctic and Greenland ice sheets. Nat. Rev. Earth Environ. 5, 193–210 (2024).

Article 

Google Scholar
 

Mouginot, J., Scheuchl, B. & Rignot, E. MEaSUREs Antarctic Boundaries for IPY 2007-2009 from Satellite Radar, Version 2. Basins as prepared for the Ice sheet Mass Balance Inter-comparison Exercise (IMBIE) 2016. National Snow and Ice Data Center (2017); https://nsidc.org/data/nsidc-0709/versions/2

Akker et al. Present-day mass loss rates are a precursor for West Antarctic Ice Sheet collapse. Cryosphere 19, 283–301 (2025).

Article 

Google Scholar
 

Paolo, F. S., Fricker, H. A. & Padman, L. Volume loss from Antarctic ice shelves is accelerating. Science 348, 327–331 (2015).

Article 
CAS 

Google Scholar
 

Gardner, A. S. et al. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. Cryosphere 12, 521–547 (2018).

Article 

Google Scholar
 

Shepherd, A. et al. Trends in Antarctic Ice Sheet elevation and mass. Geophys. Res. Lett. 46, 8174–8183 (2019).

Article 

Google Scholar
 

Smith, B. et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science 368, 1239–1242 (2020).

Article 
CAS 

Google Scholar
 

Rosier, S. H. R. et al. The tipping points and early warning indicators for Pine Island Glacier, West Antarctica. Cryosphere 15, 1501–1516 (2021).

Article 

Google Scholar
 

Sutter, J., Gierz, P., Grosfeld, K., Thoma, M. & Lohmann, G. Ocean temperature thresholds for Last Interglacial West Antarctic Ice Sheet collapse. Geophys. Res. Lett. 43, 2675–2682 (2016).

Article 

Google Scholar
 

Gomez, N., Pollard, D. & Holland, D. Sea-level feedback lowers projections of future Antarctic Ice-Sheet mass loss. Nat. Commun. 6, 8798 (2015).

Article 
CAS 

Google Scholar
 

Konrad, H., Sasgen, I., Pollard, D. & Klemann, V. Potential of the solid-Earth response for limiting long-term West Antarctic Ice Sheet retreat in a warming climate. Earth Planet. Sci. Lett. 432, 254–264 (2015).

Article 
CAS 

Google Scholar
 

Larour, E. et al. Slowdown in Antarctic mass loss from solid Earth and sea-level feedbacks. Science 364, eaav7908 (2019).

Article 
CAS 

Google Scholar
 

Fretwell, P. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393 (2013).

Article 

Google Scholar
 

The PISM Authors. PISM, a Parallel Ice Sheet Model: User’s Manual (version 1.0) (2017); https://www.pism.io

Albrecht, T., Winkelmann, R. & Levermann, A. Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM)—Part 1: Boundary conditions and climatic forcing. Cryosphere 14, 599–632 (2020).

Article 

Google Scholar
 

Feldmann, J., Albrecht, T., Khroulev, C., Pattyn, F. & Levermann, A. Resolution-dependent performance of grounding line motion in a shallow model compared with a full-Stokes model according to the MISMIP3d intercomparison. J. Glaciol. 60, 353–360 (2014).

Article 

Google Scholar
 

Schoof, C. & Hindmarsh, R. C. A. Thin-film flows with wall slip: an asymptotic analysis of higher order glacier flow models. Q. J. Mech. Appl. Math. 63, 73–114 (2010).

Article 

Google Scholar
 

Bueler, E. & van Pelt, W. Mass-conserving subglacial hydrology in the Parallel Ice Sheet Model version 0.6. Geosci. Model Dev. 8, 1613–1635 (2015).

Article 

Google Scholar
 

Levermann, A. et al. Kinematic first-order calving law implies potential for abrupt ice-shelf retreat. Cryosphere 6, 273–286 (2012).

Article 

Google Scholar
 

Albrecht, T., Martin, M., Haseloff, M., Winkelmann, R. & Levermann, A. Parameterization for subgrid-scale motion of ice-shelf calving fronts. Cryosphere 5, 35–44 (2011).

Article 

Google Scholar
 

Lingle, C. S. & Clark, J. A. A numerical model of interactions between a marine ice sheet and the solid earth: application to a West Antarctic ice stream. J. Geophys. Res. 90, 1100–1114 (1985).

Article 

Google Scholar
 

Bueler, E., Lingle, C. S. & Brown, J. Fast computation of a viscoelastic deformable Earth model for ice-sheet simulations. Ann. Glaciol. 46, 97–105 (2007).

Article 

Google Scholar
 

Reeh, N. Parameterization of melt rate and surface temperature in the Greenland Ice Sheet. Polarforschung 59, 113–128 (1991).


Google Scholar
 

Calov, R. & Greve, R. A semi-analytical solution for the positive degree-day model with stochastic temperature variations. J. Glaciol. 51, 173–175 (2005).

Article 

Google Scholar
 

Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

Article 

Google Scholar
 

Van Wessem et al. Modelling the climate and surface mass balance of polar ice sheets using RACMO2—Part 2: Antarctica (1979–2016). Cryosphere 12, 1479–1498 (2018).

Article 

Google Scholar
 

Reese, R., Albrecht, T., Mengel, M., Asay-Davis, X. & Winkelmann, R. Antarctic sub-shelf melt rates via PICO. Cryosphere 12, 1969–1985 (2018).

Article 

Google Scholar
 

Schmidtko, S., Heywood, K. J., Thompson, A. F. & Aoki, S. Multidecadal warming of Antarctic waters. Science 346, 1227–1231 (2014).

Article 
CAS 

Google Scholar
 

Seroussi, H. et al. initMIP-Antarctica: an ice sheet model initialization experiment of ISMIP6. Cryosphere 13, 1441–1471 (2019).

Article 

Google Scholar
 

Rignot, E., Mouginot, J. & Scheuchl, B. Ice flow of the Antarctic Ice Sheet. Science 333, 1427–1430 (2011).

Article 
CAS 

Google Scholar
 

Li, C., von Storch, J.-S. & Marotzke, J. Deep-ocean heat uptake and equilibrium climate response. Clim. Dynam. 40, 1071–1086 (2013).

Article 

Google Scholar
 

Rugenstein, M. et al. LongRunMIP—motivation and design for a large collection of millennial-length AO-GCM simulations LongRunMIP—motivation and design for a large collection of millennial-length AO-GCM simulations. Bull. Am. Meteorol. Soc. 100, 2551–2570 (2019).

Article 

Google Scholar
 

Seroussi, H. et al. ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century. Cryosphere 14, 3033–3070 (2020).

Article 

Google Scholar
 

Goelzer, H., Coulon, V., Pattyn, F., de Boer, B. & van de Wal, R. Brief communication: On calculating the sea-level contribution in marine ice-sheet models. Cryosphere 14, 833–840 (2020).

Article 

Google Scholar
 

Adhikari, S., Ivins, E. R., Larour, E., Caron, L. & Seroussi, H. A kinematic formalism for tracking ice–ocean mass exchange on the Earth’s surface and estimating sea-level change. Cryosphere 14, 2819–2833 (2020).

Article 

Google Scholar
 

Garbe, J., Albrecht, T., Winkelmann, R. & Donges, J. F. PISM model output data from Winkelmann et al. (Nature Climate Change, 2026) publication. Zenodo https://doi.org/10.5281/zenodo.17466786 (2025).

Garbe, J. & other PISM authors. PISM version as used in Garbe et al. (Nature, 2020) publication (v1.0-hysteresis-antarctica). Zenodo https://doi.org/10.5281/zenodo.3956431 (2020).