Friedlingstein, P. et al. Global carbon budget 2022. Earth Syst. Sci. Data 14, 4811–4900 (2022).


Google Scholar
 

Luo, Y. Terrestrial carbon–cycle feedback to climate warming. Annu. Rev. Ecol. Evol. Syst. 38, 683–712 (2007).


Google Scholar
 

Soong, J. L. et al. Five years of whole-soil warming led to loss of subsoil carbon stocks and increased CO2 efflux. Sci. Adv. 7, eabd1343 (2021).

CAS 

Google Scholar
 

Jones, C. D., Cox, P. & Huntingford, C. Uncertainty in climate–carbon-cycle projections associated with the sensitivity of soil respiration to temperature. Tellus B 55, 642–648 (2003).


Google Scholar
 

Koven, C. D., Hugelius, G., Lawrence, D. M. & Wieder, W. R. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Change 7, 817–822 (2017).

CAS 

Google Scholar
 

Crowther, T. W. et al. Quantifying global soil carbon losses in response to warming. Nature 540, 104–108 (2016).

CAS 

Google Scholar
 

Friedlingstein, P. et al. Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim. 19, 3337–3353 (2006).


Google Scholar
 

Xu, X. et al. Plant community structure regulates responses of prairie soil respiration to decadal experimental warming. Glob. Chang. Biol. 21, 3846–3853 (2015).


Google Scholar
 

Melillo, J. M. et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–105 (2017).

CAS 

Google Scholar
 

Lombardozzi, D. L., Bonan, G. B., Smith, N. G., Dukes, J. S. & Fisher, R. A. Temperature acclimation of photosynthesis and respiration: a key uncertainty in the carbon cycle–climate feedback. Geophys. Res. Lett. 42, 8624–8631 (2015).

CAS 

Google Scholar
 

Reich, P. B. et al. Boreal and temperate trees show strong acclimation of respiration to warming. Nature 531, 633–636 (2016).

CAS 

Google Scholar
 

Smith, N. G. & Dukes, J. S. Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Glob. Chang. Biol. 19, 45–63 (2013).


Google Scholar
 

Huntingford, C. et al. Implications of improved representations of plant respiration in a changing climate. Nat. Commun. 8, 1602 (2017).


Google Scholar
 

Atkin, O. K. & Tjoelker, M. G. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci. 8, 343–351 (2003).

CAS 

Google Scholar
 

Bradford, M. A. et al. Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation. Nat. Ecol. Evol. 3, 223–231 (2019).


Google Scholar
 

Crowther, T. W. & Bradford, M. A. Thermal acclimation in widespread heterotrophic soil microbes. Ecol. Lett. 16, 469–477 (2013).


Google Scholar
 

Tian, W. et al. Thermal adaptation occurs in the respiration and growth of widely distributed bacteria. Glob. Chang. Biol. 28, 2820–2829 (2022).

CAS 

Google Scholar
 

Melillo, J. M. Soil warming and carbon-cycle feedbacks to the climate system. Science 298, 2173–2176 (2002).

CAS 

Google Scholar
 

Bradford, M. A. et al. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett. 11, 1316–1327 (2008).


Google Scholar
 

Oechel, W. C. et al. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406, 978–981 (2000).

CAS 

Google Scholar
 

Quan, Q. et al. Water scaling of ecosystem carbon cycle feedback to climate warming. Sci. Adv. 5, eaav1131 (2019).

CAS 

Google Scholar
 

Yvon-Durocher, G. et al. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487, 472–476 (2012).

CAS 

Google Scholar
 

Liang, C. & Lehmann, J. Multifactorial effects matter: moving thermal adaptation into a real‐world setting. Glob. Chang. Biol. 29, 566–568 (2022).


Google Scholar
 

Zhang, Y. et al. Temperature fluctuation promotes the thermal adaptation of soil microbial respiration. Nat. Ecol. Evol. 7, 205–213 (2023).


Google Scholar
 

Li, J. et al. Low soil moisture suppresses the thermal compensatory response of microbial respiration. Glob. Chang. Biol. 29, 874–889 (2023).

CAS 

Google Scholar
 

Sun, H. et al. Nitrogen enrichment enhances thermal acclimation of soil microbial respiration. Biogeochemistry 162, 343–357 (2023).

CAS 

Google Scholar
 

Chen, J. et al. Differential responses of ecosystem respiration components to experimental warming in a meadow grassland on the Tibetan Plateau. Agric. For. Meteorol. 220, 21–29 (2016).


Google Scholar
 

Chi, Y. et al. Temperature sensitivity in individual components of ecosystem respiration increases along the vertical gradient of leaf–stem–soil in three subtropical forests. Forests 11, 140 (2020).


Google Scholar
 

Felton, A. J. & Smith, M. D. Integrating plant ecological responses to climate extremes from individual to ecosystem levels. Phil. Trans. R. Soc. B 372, 20160142 (2017).


Google Scholar
 

Luo, Y., Wan, S., Hui, D. & Wallace, L. L. Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413, 622–625 (2001).

CAS 

Google Scholar
 

Smith, N. G., Malyshev, S. L., Shevliakova, E., Kattge, J. & Dukes, J. S. Foliar temperature acclimation reduces simulated carbon sensitivity to climate. Nat. Clim. Change 6, 407–411 (2016).


Google Scholar
 

Pickett, S. T. A. in Long-Term Studies in Ecology (ed. Likens, G. E.) 110–135 (Springer, 1989).

De Frenne, P. et al. Latitudinal gradients as natural laboratories to infer species’ responses to temperature. J. Ecol. 101, 784–795 (2013).


Google Scholar
 

Vanderwel, M. C. et al. Global convergence in leaf respiration from estimates of thermal acclimation across time and space. N. Phytol. 207, 1026–1037 (2015).


Google Scholar
 

Tjoelker, M. G., Oleksyn, J., Lorenc‐Plucinska, G. & Reich, P. B. Acclimation of respiratory temperature responses in northern and southern populations of Pinus banksiana. N. Phytol. 181, 218–229 (2009).

CAS 

Google Scholar
 

Bradford, M. A., Watts, B. W. & Davies, C. A. Thermal adaptation of heterotrophic soil respiration in laboratory microcosms. Glob. Chang. Biol. 16, 1576–1588 (2010).


Google Scholar
 

Mahecha, M. D. et al. Global convergence in the temperature sensitivity of respiration at ecosystem level. Science 329, 838–840 (2010).

CAS 

Google Scholar
 

Huang, M. T. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).


Google Scholar
 

Tjoelker, M. G., Oleksyn, J. & Reich, P. B. Modelling respiration of vegetation: evidence for a general temperature-dependent Q10. Glob. Chang. Biol. 7, 223–230 (2001).


Google Scholar
 

Heskel, M. A. et al. Convergence in the temperature response of leaf respiration across biomes and plant functional types. Proc. Natl Acad. Sci. USA 113, 3832–3837 (2016).

CAS 

Google Scholar
 

Li, J., Pei, J., Pendall, E., Fang, C. & Nie, M. Spatial heterogeneity of temperature sensitivity of soil respiration: a global analysis of field observations. Soil Biol. Biochem. 141, 107675 (2020).

CAS 

Google Scholar
 

Peng, S., Piao, S., Wang, T., Sun, J. & Shen, Z. Temperature sensitivity of soil respiration in different ecosystems in China. Soil Biol. Biochem. 41, 1008–1014 (2009).

CAS 

Google Scholar
 

Chen, H. & Tian, H. Q. Does a general temperature-dependent Q10 model of soil respiration exist at biome and global scale? J. Integr. Plant Biol. 47, 1288–1302 (2005).


Google Scholar
 

Yvon-Durocher, G. et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507, 488–491 (2014).

CAS 

Google Scholar
 

Wythers, K. R., Reich, P. B. & Bradford, J. B. Incorporating temperature-sensitive Q10 and foliar respiration acclimation algorithms modifies modeled ecosystem responses to global change. J. Geophys. Res. Biogeosci. 118, 77–90 (2013).


Google Scholar
 

He, Y. et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability. Glob. Chang. Biol. 29, 1178–1187 (2023).

CAS 

Google Scholar
 

Qu, L. et al. Stronger compensatory thermal adaptation of soil microbial respiration with higher substrate availability. ISME J. 18, wrae025 (2024).


Google Scholar
 

Carey, J. C. et al. Temperature response of soil respiration largely unaltered with experimental warming. Proc. Natl Acad. Sci. USA 113, 13797–13802 (2016).

CAS 

Google Scholar
 

Malcolm, G. M., López-Gutiérrez, J. C., Koide, R. T. & Eissenstat, D. M. Acclimation to temperature and temperature sensitivity of metabolism by ectomycorrhizal fungi. Glob. Chang. Biol. 14, 1169–1180 (2008).


Google Scholar
 

Ye, J. S., Bradford, M. A., Dacal, M., Maestre, F. T. & García-Palacios, P. Increasing microbial carbon use efficiency with warming predicts soil heterotrophic respiration globally. Glob. Chang. Biol. 25, 3354–3364 (2019).


Google Scholar
 

Atkin, O. K. et al. Using temperature-dependent changes in leaf scaling relationships to quantitatively account for thermal acclimation of respiration in a coupled global climate–vegetation model. Glob. Chang. Biol. 14, 2709–2726 (2008).


Google Scholar
 

Dacal, M., Bradford, M. A., Plaza, C., Maestre, F. T. & García-Palacios, P. Soil microbial respiration adapts to ambient temperature in global drylands. Nat. Ecol. Evol. 3, 232–238 (2019).


Google Scholar
 

Li, J., Bååth, E., Pei, J., Fang, C. & Nie, M. Temperature adaptation of soil microbial respiration in alpine, boreal and tropical soils: an application of the square root (Ratkowsky) model. Glob. Chang. Biol. 27, 1281–1292 (2021).

CAS 

Google Scholar
 

Alster, C. J. et al. Quantifying thermal adaptation of soil microbial respiration. Nat. Commun. 14, 5459 (2023).

CAS 

Google Scholar
 

Niu, B. et al. Warming homogenizes apparent temperature sensitivity of ecosystem respiration. Sci. Adv. 7, eabc7358 (2021).


Google Scholar
 

Li, J. et al. Biogeographic variation in temperature sensitivity of decomposition in forest soils. Glob. Chang. Biol. 26, 1873–1885 (2020).


Google Scholar
 

Gui, Y. et al. The decline in tropical land carbon sink drove high atmospheric CO2 growth rate in 2023. Natl Sci. Rev. 11, nwae365 (2024).


Google Scholar
 

Liu, X. et al. Long-term warming increased carbon sequestration capacity in a humid subtropical forest. Glob. Chang. Biol. 30, e17072 (2024).


Google Scholar
 

Lee, J. Y. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 553–672 (IPCC, Cambridge Univ. Press, 2021).

Wolkovich, E. M., Cook, B. I., McLauchlan, K. K. & Davies, T. J. Temporal ecology in the Anthropocene. Ecol. Lett. 17, 1365–1379 (2014).

CAS 

Google Scholar
 

Pastorello, G. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).


Google Scholar
 

Liu, Y., Wu, C., Wang, X. & Zhang, Y. Contrasting responses of peak vegetation growth to asymmetric warming: evidences from FLUXNET and satellite observations. Glob. Chang. Biol. 29, 2363–2379 (2023).

CAS 

Google Scholar
 

Hamdi, S. Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions. Soil Biol. Biochem. 58, 115–126 (2013).

CAS 

Google Scholar
 

Zomer, R. J., Xu, J. & Trabucco, A. Version 3 of the Global Aridity Index and Potential Evapotranspiration Database. Sci. Data 9, 409 (2022).


Google Scholar
 

Allen, R. G. et al. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements FAO Irrigation and Drainage Paper No. 56 (Food and Agriculture Organization, 1998).

Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).


Google Scholar
 

Chen, W. et al. Evidence for widespread thermal optimality of ecosystem respiration. Nat. Ecol. Evol. 7, 1379–1387 (2023).


Google Scholar
 

Duffy, K. A. et al. How close are we to the temperature tipping point of the terrestrial biosphere? Sci. Adv. 7, eaay1052 (2021).

CAS 

Google Scholar
 

Niu, S. et al. Temperature responses of ecosystem respiration. Nat. Rev. Earth Environ. 5, 559–571 (2024).


Google Scholar
 

Bååth, E. Temperature sensitivity of soil microbial activity modeled by the square root equation as a unifying model to differentiate between direct temperature effects and microbial community adaptation. Glob. Chang. Biol. 24, 2850–2861 (2018).


Google Scholar
 

Alster, C. J., Fischer, J. C., Allison, S. D. & Treseder, K. K. Embracing a new paradigm for temperature sensitivity of soil microbes. Glob. Chang. Biol. 26, 3221–3229 (2020).


Google Scholar
 

Robinson, J. M. et al. Rapid laboratory measurement of the temperature dependence of soil respiration and application to changes in three diverse soils through the year. Biogeochemistry 133, 101–112 (2017).

CAS 

Google Scholar
 

Hobbs, J. K. et al. Change in heat capacity for enzyme catalysis determines temperature dependence of enzyme catalyzed rates. ACS Chem. Biol. 8, 2388–2393 (2013).

CAS 

Google Scholar
 

Dam, H. G. Evolutionary adaptation of marine zooplankton to global change. Ann. Rev. Mar. Sci. 5, 349–370 (2013).


Google Scholar
 

Liu, H. et al. Phenological mismatches between above- and belowground plant responses to climate warming. Nat. Clim. Change 12, 97–102 (2021).


Google Scholar
 

Lloyd, J. & Taylor, J. A. On the temperature dependence of soil respiration. Funct. Ecol. 8, 315–323 (1994).


Google Scholar
 

Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

CAS 

Google Scholar
 

Wang, M. et al. Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate. Nat. Commun. 13, 5514 (2022).

CAS 

Google Scholar
 

Chen, Z. et al. Covariation between gross primary production and ecosystem respiration across space and the underlying mechanisms: a global synthesis. Agric. For. Meteorol. 203, 180–190 (2015).


Google Scholar
 

Wang, B. et al. Dryness limits vegetation pace to cope with temperature change in warm regions. Glob. Chang. Biol. 29, 4750–4757 (2023).

CAS 

Google Scholar
 

Tjoelker, M. G., Oleksyn, J., Reich, P. B. & Żytkowiak, R. Coupling of respiration, nitrogen, and sugars underlies convergent temperature acclimation in Pinus banksiana across wide-ranging sites and populations. Glob. Chang. Biol. 14, 782–797 (2008).


Google Scholar
 

Li, X. et al. Increased crossing of thermal stress thresholds of vegetation under global warming. Glob. Chang. Biol. 30, e17406 (2024).

CAS 

Google Scholar
 

R Core Team R: a language and environment for statistical computing. R version 4.1.0 (2021).

Xu, X. et al. Thermal adaptation of respiration in terrestrial ecosystems alleviates carbon loss. figshare https://doi.org/10.6084/m9.figshare.28246940 (2025).