Stegeman, G. & Segev, M. Optical spatial solitons and their interactions: universality and diversity. Science 286, 1518–1523 (1999).
Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181 (1973).
Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).
Nakahara, M. Geometry, Topology and Physics (CRC, 2018).
Skyrme, T. H. R. A unified field theory of mesons and baryons. Nucl. Phys. 31, 556–569 (1962).
Essmann, U. & Träuble, H. The direct observation of individual flux lines in type II superconductors. Phys. Lett. A 24, 526–527 (1967).
Williams, G. A. & Packard, R. E. Photographs of quantized vortex lines in rotating He ii. Phys. Rev. Lett. 33, 280–283 (1974).
Parts, Ü. et al. Phase diagram of vortices in superfluid 3He-A. Phys. Rev. Lett. 75, 3320–3323 (1995).
Karimäki, J. M. & Thuneberg, E. V. Periodic vortex structures in superfluid 3He-A. Phys. Rev. B 60, 15290–15301 (1999).
Takeuchi, H. Spin-current instability at a magnetic domain wall in a ferromagnetic superfluid: a generation mechanism of eccentric fractional skyrmions. Phys. Rev. A 105, 013328 (2022).
Thomson, W. XLVI. Hydrokinetic solutions and observations. Philos. Mag. 42, 362–377 (1871).
von Helmholtz, H. On the discontinuous movements of fluids. Lond. Edinb. Dublin Philos. Mag. J. Sci. 36, 337–346 (1868).
Smyth, W. D. & Moum, J. N. Ocean mixing by Kelvin-Helmholtz instability. Oceanography 25, 140–149 (2012).
Delamere, P. A. & Bagenal, F. Solar wind interaction with Jupiter’s magnetosphere. J. Geophys. Res. 115, 10201 (2010).
Blaauwgeers, R. et al. Shear flow and Kelvin-Helmholtz instability in superfluids. Phys. Rev. Lett. 89, 155301 (2002).
Volovik, G. E. On the Kelvin-Helmholtz instability in superfluids. JETP Lett. 75, 418–422 (2002).
Finne, A. et al. Dynamics of vortices and interfaces in superfluid 3He. Rep. Prog. Phys. 69, 3157 (2006).
Takeuchi, H., Suzuki, N., Kasamatsu, K., Saito, H. & Tsubota, M. Quantum Kelvin-Helmholtz instability in phase-separated two-component Bose-Einstein condensates. Phys. Rev. B 81, 094517 (2010).
Suzuki, N., Takeuchi, H., Kasamatsu, K., Tsubota, M. & Saito, H. Crossover between Kelvin-Helmholtz and counter-superflow instabilities in two-component Bose-Einstein condensates. Phys. Rev. A 82, 063604 (2010).
Baggaley, A. W. & Parker, N. G. Kelvin-Helmholtz instability in a single-component atomic superfluid. Phys. Rev. A 97, 053608 (2018).
Kokubo, H., Kasamatsu, K. & Takeuchi, H. Pattern formation of quantum Kelvin-Helmholtz instability in binary superfluids. Phys. Rev. A 104, 023312 (2021).
Kokubo, H., Kasamatsu, K. & Takeuchi, H. Vorticity distribution in quantum Kelvin–Helmholtz instability of binary Bose–Einstein condensates. J. Low Temp. Phys. 208, 410–417 (2022).
Mukherjee, B. et al. Crystallization of bosonic quantum Hall states in a rotating quantum gas. Nature 601, 58–62 (2022).
Hernandez-Rajkov, D. et al. Connecting shear flow and vortex array instabilities in annular atomic superfluids. Nat. Phys. 20, 939–944 (2024).
Volovik, G. E. Superfluids in rotation: Landau-Lifshitz vortex sheets vs Onsager-Feynman vortices. Phys.-Uspekhi 58, 897 (2015).
Parts, Ü. et al. Vortex sheet in rotating superfluid 3He-A. Phys. Rev. Lett. 72, 3839–3842 (1994).
Parts, Ü. et al. Bragg reflection from equidistant planes of vortex sheets in rotating 3He-A. Pisma ZhETF 59, 816–820 (1994).
Eltsov, V. B. et al. Transitions from vortex lines to sheets: interplay of topology and dynamics in an anisotropic superfluid. Phys. Rev. Lett. 88, 065301 (2002).
Hänninen, R. et al. Structure of the surface vortex sheet between two rotating 3He superfluids. Phys. Rev. Lett. 90, 225301 (2003).
Kasamatsu, K., Tsubota, M. & Ueda, M. Vortex phase diagram in rotating two-component Bose-Einstein condensates. Phys. Rev. Lett. 91, 150406 (2003).
Kasamatsu, K. & Tsubota, M. Vortex sheet in rotating two-component Bose-Einstein condensates. Phys. Rev. A 79, 023606 (2009).
Williamson, L. A. & Blakie, P. B. Universal coarsening dynamics of a quenched ferromagnetic spin-1 condensate. Phys. Rev. Lett. 116, 025301 (2016).
Huh, S. et al. Universality class of a spinor Bose-Einstein condensate far from equilibrium. Nat. Phys. 20, 402–408 (2024).
Mermin, N. D. & Ho, T.-L. Circulation and angular momentum in the A phase of superfluid helium-3. Phys. Rev. Lett. 36, 594–597 (1976).
Salomaa, M. M. & Volovik, G. E. Quantized vortices in superfluid 3He. Rev. Mod. Phys. 59, 533–613 (1987).
Takeuchi, H. Quantum elliptic vortex in a nematic-spin Bose-Einstein condensate. Phys. Rev. Lett. 126, 195302 (2021).
Takeuchi, H. Phase diagram of vortices in the polar phase of spin-1 Bose-Einstein condensates. Phys. Rev. A 104, 013316 (2021).
Isoshima, T., Machida, K. & Ohmi, T. Quantum vortex in a spinor Bose-Einstein condensate. J. Phys. Soc. Jpn 70, 1604 (2001).
Cladé, P., Ryu, C., Ramanathan, A., Helmerson, K. & Phillips, W. D. Observation of a 2D Bose gas: from thermal to quasicondensate to superfluid. Phys. Rev. Lett. 102, 170401 (2009).
Kwon, W. J., Moon, G., Choi, J.-y, Seo, S. W. & Shin, Y.-i Relaxation of superfluid turbulence in highly oblate Bose-Einstein condensates. Phys. Rev. A 90, 063627 (2014).
Kobyakov, D., Bezett, A., Lundh, E., Marklund, M. & Bychkov, V. Turbulence in binary Bose-Einstein condensates generated by highly nonlinear Rayleigh-Taylor and Kelvin-Helmholtz instabilities. Phys. Rev. A 89, 013631 (2014).
Henn, E. A. L., Seman, J. A., Roati, G., Magalhães, K. M. F. & Bagnato, V. S. Emergence of turbulence in an oscillating Bose-Einstein condensate. Phys. Rev. Lett. 103, 045301 (2009).
Navon, N., Gaunt, A. L., Robert, P. & Hadzibabic, Z. Emergence of a turbulent cascade in a quantum gas. Nature 539, 72–75 (2016).
Gałka, M. et al. Emergence of isotropy and dynamic scaling in 2D wave turbulence in a homogeneous Bose gas. Phys. Rev. Lett. 129, 190402 (2022).
Hong, D. et al. Spin-driven stationary turbulence in spinor Bose-Einstein condensates. Phys. Rev. A 108, 013318 (2023).
Fujimoto, K. & Tsubota, M. Spin turbulence in a trapped spin-1 spinor Bose-Einstein condensate. Phys. Rev. A 85, 053641 (2012).
Tsubota, M., Aoki, Y. & Fujimoto, K. Spin-glass-like behavior in the spin turbulence of spinor Bose-Einstein condensates. Phys. Rev. A 88, 061601 (2013).
Schweikhard, V. et al. Vortex-lattice dynamics in rotating spinor Bose-Einstein condensates. Phys. Rev. Lett. 93, 210403 (2004).
Kasamatsu, K., Tsubota, M. & Ueda, M. Vortex molecules in coherently coupled two-component Bose-Einstein condensates. Phys. Rev. Lett. 93, 250406 (2004).
Huh, S., Kim, K., Kwon, K. & Choi, J.-y Observation of a strongly ferromagnetic spinor Bose-Einstein condensate. Phys. Rev. Res. 2, 033471 (2020).
Kawaguchi, Y. & Ueda, M. Spinor Bose-Einstein condensates. Phys. Rep. 520, 253–381 (2012).
Choi, J.-y, Seo, S. W., Kwon, W. J. & Shin, Y.-i Probing phase fluctuations in a 2D degenerate Bose gas by free expansion. Phys. Rev. Lett. 109, 125301 (2012).
Kawaguchi, Y., Saito, H., Kudo, K. & Ueda, M. Spontaneous magnetic ordering in a ferromagnetic spinor dipolar Bose-Einstein condensate. Phys. Rev. A 82, 043627 (2010).
Gudnason, S. B. & Speight, J. M. Realistic classical binding energies in the ω-Skyrme model. J. High Energy Phys. 2020, 184 (2020).
Leiler, G. & Rezzolla, L. Iterated Crank-Nicolson method for hyperbolic and parabolic equations in numerical relativity. Phys. Rev. D 73, 044001 (2006).
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
Shin, Y. et al. Dynamical instability of a doubly quantized vortex in a Bose-Einstein condensate. Phys. Rev. Lett. 93, 160406 (2004).
Weiss, L. S. et al. Controlled creation of a singular spinor vortex by circumventing the Dirac belt trick. Nat. Commun. 10, 4772 (2019).
Becker, C. et al. Oscillations and interactions of dark and dark-bright solitons in Bose-Einstein condensates. Nat. Phys. 4, 496–501 (2008).