Stegeman, G. & Segev, M. Optical spatial solitons and their interactions: universality and diversity. Science 286, 1518–1523 (1999).


Google Scholar
 

Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181 (1973).

ADS 

Google Scholar
 

Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

ADS 

Google Scholar
 

Nakahara, M. Geometry, Topology and Physics (CRC, 2018).

Skyrme, T. H. R. A unified field theory of mesons and baryons. Nucl. Phys. 31, 556–569 (1962).

MathSciNet 

Google Scholar
 

Essmann, U. & Träuble, H. The direct observation of individual flux lines in type II superconductors. Phys. Lett. A 24, 526–527 (1967).

ADS 

Google Scholar
 

Williams, G. A. & Packard, R. E. Photographs of quantized vortex lines in rotating He ii. Phys. Rev. Lett. 33, 280–283 (1974).

ADS 

Google Scholar
 

Parts, Ü. et al. Phase diagram of vortices in superfluid 3He-A. Phys. Rev. Lett. 75, 3320–3323 (1995).

ADS 

Google Scholar
 

Karimäki, J. M. & Thuneberg, E. V. Periodic vortex structures in superfluid 3He-A. Phys. Rev. B 60, 15290–15301 (1999).

ADS 

Google Scholar
 

Takeuchi, H. Spin-current instability at a magnetic domain wall in a ferromagnetic superfluid: a generation mechanism of eccentric fractional skyrmions. Phys. Rev. A 105, 013328 (2022).

ADS 

Google Scholar
 

Thomson, W. XLVI. Hydrokinetic solutions and observations. Philos. Mag. 42, 362–377 (1871).


Google Scholar
 

von Helmholtz, H. On the discontinuous movements of fluids. Lond. Edinb. Dublin Philos. Mag. J. Sci. 36, 337–346 (1868).


Google Scholar
 

Smyth, W. D. & Moum, J. N. Ocean mixing by Kelvin-Helmholtz instability. Oceanography 25, 140–149 (2012).


Google Scholar
 

Delamere, P. A. & Bagenal, F. Solar wind interaction with Jupiter’s magnetosphere. J. Geophys. Res. 115, 10201 (2010).


Google Scholar
 

Blaauwgeers, R. et al. Shear flow and Kelvin-Helmholtz instability in superfluids. Phys. Rev. Lett. 89, 155301 (2002).

ADS 

Google Scholar
 

Volovik, G. E. On the Kelvin-Helmholtz instability in superfluids. JETP Lett. 75, 418–422 (2002).

ADS 

Google Scholar
 

Finne, A. et al. Dynamics of vortices and interfaces in superfluid 3He. Rep. Prog. Phys. 69, 3157 (2006).

ADS 

Google Scholar
 

Takeuchi, H., Suzuki, N., Kasamatsu, K., Saito, H. & Tsubota, M. Quantum Kelvin-Helmholtz instability in phase-separated two-component Bose-Einstein condensates. Phys. Rev. B 81, 094517 (2010).

ADS 

Google Scholar
 

Suzuki, N., Takeuchi, H., Kasamatsu, K., Tsubota, M. & Saito, H. Crossover between Kelvin-Helmholtz and counter-superflow instabilities in two-component Bose-Einstein condensates. Phys. Rev. A 82, 063604 (2010).

ADS 

Google Scholar
 

Baggaley, A. W. & Parker, N. G. Kelvin-Helmholtz instability in a single-component atomic superfluid. Phys. Rev. A 97, 053608 (2018).

ADS 

Google Scholar
 

Kokubo, H., Kasamatsu, K. & Takeuchi, H. Pattern formation of quantum Kelvin-Helmholtz instability in binary superfluids. Phys. Rev. A 104, 023312 (2021).

ADS 
MathSciNet 

Google Scholar
 

Kokubo, H., Kasamatsu, K. & Takeuchi, H. Vorticity distribution in quantum Kelvin–Helmholtz instability of binary Bose–Einstein condensates. J. Low Temp. Phys. 208, 410–417 (2022).

ADS 

Google Scholar
 

Mukherjee, B. et al. Crystallization of bosonic quantum Hall states in a rotating quantum gas. Nature 601, 58–62 (2022).

ADS 

Google Scholar
 

Hernandez-Rajkov, D. et al. Connecting shear flow and vortex array instabilities in annular atomic superfluids. Nat. Phys. 20, 939–944 (2024).


Google Scholar
 

Volovik, G. E. Superfluids in rotation: Landau-Lifshitz vortex sheets vs Onsager-Feynman vortices. Phys.-Uspekhi 58, 897 (2015).

ADS 

Google Scholar
 

Parts, Ü. et al. Vortex sheet in rotating superfluid 3He-A. Phys. Rev. Lett. 72, 3839–3842 (1994).

ADS 

Google Scholar
 

Parts, Ü. et al. Bragg reflection from equidistant planes of vortex sheets in rotating 3He-A. Pisma ZhETF 59, 816–820 (1994).


Google Scholar
 

Eltsov, V. B. et al. Transitions from vortex lines to sheets: interplay of topology and dynamics in an anisotropic superfluid. Phys. Rev. Lett. 88, 065301 (2002).

ADS 

Google Scholar
 

Hänninen, R. et al. Structure of the surface vortex sheet between two rotating 3He superfluids. Phys. Rev. Lett. 90, 225301 (2003).

ADS 

Google Scholar
 

Kasamatsu, K., Tsubota, M. & Ueda, M. Vortex phase diagram in rotating two-component Bose-Einstein condensates. Phys. Rev. Lett. 91, 150406 (2003).

ADS 

Google Scholar
 

Kasamatsu, K. & Tsubota, M. Vortex sheet in rotating two-component Bose-Einstein condensates. Phys. Rev. A 79, 023606 (2009).

ADS 

Google Scholar
 

Williamson, L. A. & Blakie, P. B. Universal coarsening dynamics of a quenched ferromagnetic spin-1 condensate. Phys. Rev. Lett. 116, 025301 (2016).

ADS 

Google Scholar
 

Huh, S. et al. Universality class of a spinor Bose-Einstein condensate far from equilibrium. Nat. Phys. 20, 402–408 (2024).


Google Scholar
 

Mermin, N. D. & Ho, T.-L. Circulation and angular momentum in the A phase of superfluid helium-3. Phys. Rev. Lett. 36, 594–597 (1976).

ADS 

Google Scholar
 

Salomaa, M. M. & Volovik, G. E. Quantized vortices in superfluid 3He. Rev. Mod. Phys. 59, 533–613 (1987).

ADS 

Google Scholar
 

Takeuchi, H. Quantum elliptic vortex in a nematic-spin Bose-Einstein condensate. Phys. Rev. Lett. 126, 195302 (2021).

ADS 
MathSciNet 

Google Scholar
 

Takeuchi, H. Phase diagram of vortices in the polar phase of spin-1 Bose-Einstein condensates. Phys. Rev. A 104, 013316 (2021).

ADS 
MathSciNet 

Google Scholar
 

Isoshima, T., Machida, K. & Ohmi, T. Quantum vortex in a spinor Bose-Einstein condensate. J. Phys. Soc. Jpn 70, 1604 (2001).

ADS 

Google Scholar
 

Cladé, P., Ryu, C., Ramanathan, A., Helmerson, K. & Phillips, W. D. Observation of a 2D Bose gas: from thermal to quasicondensate to superfluid. Phys. Rev. Lett. 102, 170401 (2009).

ADS 

Google Scholar
 

Kwon, W. J., Moon, G., Choi, J.-y, Seo, S. W. & Shin, Y.-i Relaxation of superfluid turbulence in highly oblate Bose-Einstein condensates. Phys. Rev. A 90, 063627 (2014).

ADS 

Google Scholar
 

Kobyakov, D., Bezett, A., Lundh, E., Marklund, M. & Bychkov, V. Turbulence in binary Bose-Einstein condensates generated by highly nonlinear Rayleigh-Taylor and Kelvin-Helmholtz instabilities. Phys. Rev. A 89, 013631 (2014).

ADS 

Google Scholar
 

Henn, E. A. L., Seman, J. A., Roati, G., Magalhães, K. M. F. & Bagnato, V. S. Emergence of turbulence in an oscillating Bose-Einstein condensate. Phys. Rev. Lett. 103, 045301 (2009).

ADS 

Google Scholar
 

Navon, N., Gaunt, A. L., Robert, P. & Hadzibabic, Z. Emergence of a turbulent cascade in a quantum gas. Nature 539, 72–75 (2016).

ADS 

Google Scholar
 

Gałka, M. et al. Emergence of isotropy and dynamic scaling in 2D wave turbulence in a homogeneous Bose gas. Phys. Rev. Lett. 129, 190402 (2022).

ADS 

Google Scholar
 

Hong, D. et al. Spin-driven stationary turbulence in spinor Bose-Einstein condensates. Phys. Rev. A 108, 013318 (2023).

ADS 

Google Scholar
 

Fujimoto, K. & Tsubota, M. Spin turbulence in a trapped spin-1 spinor Bose-Einstein condensate. Phys. Rev. A 85, 053641 (2012).

ADS 

Google Scholar
 

Tsubota, M., Aoki, Y. & Fujimoto, K. Spin-glass-like behavior in the spin turbulence of spinor Bose-Einstein condensates. Phys. Rev. A 88, 061601 (2013).

ADS 

Google Scholar
 

Schweikhard, V. et al. Vortex-lattice dynamics in rotating spinor Bose-Einstein condensates. Phys. Rev. Lett. 93, 210403 (2004).

ADS 

Google Scholar
 

Kasamatsu, K., Tsubota, M. & Ueda, M. Vortex molecules in coherently coupled two-component Bose-Einstein condensates. Phys. Rev. Lett. 93, 250406 (2004).

ADS 

Google Scholar
 

Huh, S., Kim, K., Kwon, K. & Choi, J.-y Observation of a strongly ferromagnetic spinor Bose-Einstein condensate. Phys. Rev. Res. 2, 033471 (2020).


Google Scholar
 

Kawaguchi, Y. & Ueda, M. Spinor Bose-Einstein condensates. Phys. Rep. 520, 253–381 (2012).

ADS 
MathSciNet 

Google Scholar
 

Choi, J.-y, Seo, S. W., Kwon, W. J. & Shin, Y.-i Probing phase fluctuations in a 2D degenerate Bose gas by free expansion. Phys. Rev. Lett. 109, 125301 (2012).

ADS 

Google Scholar
 

Kawaguchi, Y., Saito, H., Kudo, K. & Ueda, M. Spontaneous magnetic ordering in a ferromagnetic spinor dipolar Bose-Einstein condensate. Phys. Rev. A 82, 043627 (2010).

ADS 

Google Scholar
 

Gudnason, S. B. & Speight, J. M. Realistic classical binding energies in the ω-Skyrme model. J. High Energy Phys. 2020, 184 (2020).

MathSciNet 

Google Scholar
 

Leiler, G. & Rezzolla, L. Iterated Crank-Nicolson method for hyperbolic and parabolic equations in numerical relativity. Phys. Rev. D 73, 044001 (2006).

ADS 
MathSciNet 

Google Scholar
 

Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).


Google Scholar
 

Shin, Y. et al. Dynamical instability of a doubly quantized vortex in a Bose-Einstein condensate. Phys. Rev. Lett. 93, 160406 (2004).

ADS 

Google Scholar
 

Weiss, L. S. et al. Controlled creation of a singular spinor vortex by circumventing the Dirac belt trick. Nat. Commun. 10, 4772 (2019).

ADS 

Google Scholar
 

Becker, C. et al. Oscillations and interactions of dark and dark-bright solitons in Bose-Einstein condensates. Nat. Phys. 4, 496–501 (2008).


Google Scholar