Small, J. S. General-purpose electronic analog computing: 1945-1965. IEEE Ann. Hist. Comput. 15, 8–18 (1993).
Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15, 529–544 (2020).
Yao, P. et al. Fully hardware-implemented memristor convolutional neural network. Nature 577, 641–646 (2020).
Huang, Y. et al. Memristor-based hardware accelerators for artificial intelligence. Nat. Rev. Electr. Eng 1, 286–299 (2024).
Liu, H. et al. Artificial neuronal devices based on emerging materials: neuronal dynamics and applications. Adv. Mater. 35, 2205047 (2023).
Gokmen, T. & Haensch, W. Algorithm for training neural networks on resistive device arrays. Front. Neurosci. 14, 103 (2020).
Xiao, T. P., Bennett, C. H., Feinberg, B., Agarwal, S. & Marinella, M. J. Analog architectures for neural network acceleration based on non-volatile memory. Appl. Phys. Rev. 7, 011309 (2020).
Rasch, M. J., Carta, F., Fagbohungbe, O. & Gokmen, T. Fast and robust analog in-memory deep neural network training. Nat. Commun. 15, 7133 (2024).
Noh, K. et al. Retention-aware zero-shifting technique for Tiki-Taka algorithm-based analog deep learning accelerator. Sci. Adv. 10, eadl3350 (2024).
Byun, K. et al. Recent advances in synaptic nonvolatile memory devices and compensating architectural and algorithmic methods toward fully integrated neuromorphic chips. Adv. Mater. Technol. 8, 2200884 (2023).
Gong, N. et al. Deep learning acceleration in 14nm CMOS compatible ReRAM array: device, material and algorithm co-optimization. In IEEE International Electron Devices Meeting (IEDM) 33.37.31–33.37.34 (IEEE, 2022).
Yasuda, H. et al. Mechanical computing. Nature 598, 39–48 (2021).
Mei, T. & Chen, C. Q. In-memory mechanical computing. Nat. Commun. 14, 5204 (2023).
Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020).
Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photon. 15, 102–114 (2021).
Hamerly, R., Bernstein, L., Sludds, A., Soljačić, M. & Englund, D. Large-scale optical neural networks based on photoelectric multiplication. Phys. Rev. X 9, 021032 (2019).
Pai, S. et al. Experimentally realized in situ backpropagation for deep learning in photonic neural networks. Science 380, 398–404 (2023).
Filipovich, M. J. et al. Silicon photonic architecture for training deep neural networks with direct feedback alignment. Optica 9, 1323–1332 (2022).
Lin, Z. et al. 120 GOPS photonic tensor core in thin-film lithium niobate for inference and in situ training. Nat. Commun. 15, 9081 (2024).
Buckley, S. M., Tait, A. N., McCaughan, A. N. & Shastri, B. J. Photonic online learning: a perspective. Nanophotonics 12, 833–845 (2023).
Xu, Z. et al. Large-scale photonic chiplet Taichi empowers 160-TOPS/W artificial general intelligence. Science 384, 202–209 (2024).
Feng, H. et al. Integrated lithium niobate microwave photonic processing engine. Nature 627, 80–87 (2024).
Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).
Zhang, H. et al. An optical neural chip for implementing complex-valued neural network. Nat. Commun. 12, 457 (2021).
Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018).
Fu, T. et al. Photonic machine learning with on-chip diffractive optics. Nat. Commun. 14, 70 (2023).
Zhou, T. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photon. 15, 367–373 (2021).
Wang, Z., Chang, L., Wang, F., Li, T. & Gu, T. Integrated photonic metasystem for image classifications at telecommunication wavelength. Nat. Commun. 13, 2131 (2022).
Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).
Ashtiani, F., Geers, A. J. & Aflatouni, F. An on-chip photonic deep neural network for image classification. Nature 606, 501–506 (2022).
Feldmann, J., Youngblood, N., Wright, C. D., Bhaskaran, H. & Pernice, W. H. P. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019).
Dong, B. et al. Higher-dimensional processing using a photonic tensor core with continuous-time data. Nat. Photon. 17, 1080–1088 (2023).
Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).
Nahmias, M. A. et al. An integrated analog O/E/O link for multi-channel laser neurons. Appl. Phys. Lett. 108, 151109 (2016).
Bandyopadhyay, S. et al. Single-chip photonic deep neural network with forward-only training. Nat. Photon. 18, 1335–1343 (2024).
Wang, T. et al. Image sensing with multilayer nonlinear optical neural networks. Nat. Photon. 17, 408–415 (2023).
Pintus, P. et al. Integrated non-reciprocal magneto-optics with ultra-high endurance for photonic in-memory computing. Nat. Photon. 19, 54–62 (2025).
Fan, L., Wang, K., Wang, H., Dutt, A. & Fan, S. Experimental realization of convolution processing in photonic synthetic frequency dimensions. Sci. Adv. 9, eadi4956 (2023).
Zhao, H., Li, B., Li, H. & Li, M. Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics. Nat. Commun. 13, 5426 (2022).
Buddhiraju, S., Dutt, A., Minkov, M., Williamson, I. A. D. & Fan, S. Arbitrary linear transformations for photons in the frequency synthetic dimension. Nat. Commun. 12, 2401 (2021).
Fan, L. et al. Multidimensional convolution operation with synthetic frequency dimensions in photonics. Phys. Rev. Appl. 18, 034088 (2022).
Basani, J. R., Heuck, M., Englund, D. R. & Krastanov, S. All-photonic artificial-neural-network processor via nonlinear optics. Phys. Rev. Appl. 22, 014009 (2024).
Davis III, R., Chen, Z., Hamerly, R. & Englund, D. RF-photonic deep learning processor with Shannon-limited data movement. Sci. Adv. 11, eadt3558 (2025).
Gong, S., Lu, R., Yang, Y., Gao, L. & Hassanien, A. E. Microwave acoustic devices: recent advances and outlook. IEEE J. Microw. 1, 601–609 (2021).
Lu, R. & Gong, S. RF acoustic microsystems based on suspended lithium niobate thin films: advances and outlook. J. Micromech. Microeng 31, 114001 (2021).
Marpaung, D., Yao, J. & Capmany, J. Integrated microwave photonics. Nat. Photon. 13, 80–90 (2019).
Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photon. 13, 242–352 (2021).
Shao, L. et al. Phononic band structure engineering for high-Q gigahertz surface acoustic wave resonators on lithium niobate. Phys. Rev. Appl. 12, 014022 (2019).
Shao, L. et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica 6, 1498–1505 (2019).
Cho, Y. & Yamanouchi, K. Nonlinear, elastic, piezoelectric, electrostrictive, and dielectric constants of lithium niobate. J. Appl. Phys. 61, 875–887 (1987).
Xiao, H., Rasul, K. & Vollgraf, R. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. Preprint at https://arxiv.org/abs/1708.07747 (2017).
LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).
Shao, L. et al. Electrical control of surface acoustic waves. Nat. Electron. 5, 348–355 (2022).
de Castilla, H., Bélanger, P. & Zednik, R. J. High temperature characterization of piezoelectric lithium niobate using electrochemical impedance spectroscopy resonance method. J. Appl. Phys. 122, 244103 (2017).
Hackett, L. et al. Giant electron-mediated phononic nonlinearity in semiconductor–piezoelectric heterostructures. Nat. Mater. 23, 1386–1393 (2024).
Xie, J. et al. Sub-terahertz electromechanics. Nat. Electron. 6, 301–306 (2023).
Liu, B. et al. Surface acoustic wave devices for sensor applications. J. Semicond. 37, 021001 (2016).
Zhou, F. & Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020).
Thomas, J. G. et al. Spectral interferometry-based microwave-frequency vibrometry for integrated acoustic wave devices. Optica 12, 935–944 (2025).
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Shao, L. Code and plot data for “Synthetic-domain computing and neural networks using lithium niobate integrated nonlinear phononics”. figshare https://doi.org/10.6084/m9.figshare.29376791.v1 (2025).