Small, J. S. General-purpose electronic analog computing: 1945-1965. IEEE Ann. Hist. Comput. 15, 8–18 (1993).


Google Scholar
 

Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15, 529–544 (2020).


Google Scholar
 

Yao, P. et al. Fully hardware-implemented memristor convolutional neural network. Nature 577, 641–646 (2020).


Google Scholar
 

Huang, Y. et al. Memristor-based hardware accelerators for artificial intelligence. Nat. Rev. Electr. Eng 1, 286–299 (2024).


Google Scholar
 

Liu, H. et al. Artificial neuronal devices based on emerging materials: neuronal dynamics and applications. Adv. Mater. 35, 2205047 (2023).


Google Scholar
 

Gokmen, T. & Haensch, W. Algorithm for training neural networks on resistive device arrays. Front. Neurosci. 14, 103 (2020).


Google Scholar
 

Xiao, T. P., Bennett, C. H., Feinberg, B., Agarwal, S. & Marinella, M. J. Analog architectures for neural network acceleration based on non-volatile memory. Appl. Phys. Rev. 7, 011309 (2020).

Rasch, M. J., Carta, F., Fagbohungbe, O. & Gokmen, T. Fast and robust analog in-memory deep neural network training. Nat. Commun. 15, 7133 (2024).


Google Scholar
 

Noh, K. et al. Retention-aware zero-shifting technique for Tiki-Taka algorithm-based analog deep learning accelerator. Sci. Adv. 10, eadl3350 (2024).


Google Scholar
 

Byun, K. et al. Recent advances in synaptic nonvolatile memory devices and compensating architectural and algorithmic methods toward fully integrated neuromorphic chips. Adv. Mater. Technol. 8, 2200884 (2023).


Google Scholar
 

Gong, N. et al. Deep learning acceleration in 14nm CMOS compatible ReRAM array: device, material and algorithm co-optimization. In IEEE International Electron Devices Meeting (IEDM) 33.37.31–33.37.34 (IEEE, 2022).

Yasuda, H. et al. Mechanical computing. Nature 598, 39–48 (2021).


Google Scholar
 

Mei, T. & Chen, C. Q. In-memory mechanical computing. Nat. Commun. 14, 5204 (2023).


Google Scholar
 

Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020).


Google Scholar
 

Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photon. 15, 102–114 (2021).


Google Scholar
 

Hamerly, R., Bernstein, L., Sludds, A., Soljačić, M. & Englund, D. Large-scale optical neural networks based on photoelectric multiplication. Phys. Rev. X 9, 021032 (2019).


Google Scholar
 

Pai, S. et al. Experimentally realized in situ backpropagation for deep learning in photonic neural networks. Science 380, 398–404 (2023).


Google Scholar
 

Filipovich, M. J. et al. Silicon photonic architecture for training deep neural networks with direct feedback alignment. Optica 9, 1323–1332 (2022).


Google Scholar
 

Lin, Z. et al. 120 GOPS photonic tensor core in thin-film lithium niobate for inference and in situ training. Nat. Commun. 15, 9081 (2024).


Google Scholar
 

Buckley, S. M., Tait, A. N., McCaughan, A. N. & Shastri, B. J. Photonic online learning: a perspective. Nanophotonics 12, 833–845 (2023).


Google Scholar
 

Xu, Z. et al. Large-scale photonic chiplet Taichi empowers 160-TOPS/W artificial general intelligence. Science 384, 202–209 (2024).


Google Scholar
 

Feng, H. et al. Integrated lithium niobate microwave photonic processing engine. Nature 627, 80–87 (2024).


Google Scholar
 

Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).


Google Scholar
 

Zhang, H. et al. An optical neural chip for implementing complex-valued neural network. Nat. Commun. 12, 457 (2021).


Google Scholar
 

Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018).

MathSciNet 

Google Scholar
 

Fu, T. et al. Photonic machine learning with on-chip diffractive optics. Nat. Commun. 14, 70 (2023).


Google Scholar
 

Zhou, T. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photon. 15, 367–373 (2021).


Google Scholar
 

Wang, Z., Chang, L., Wang, F., Li, T. & Gu, T. Integrated photonic metasystem for image classifications at telecommunication wavelength. Nat. Commun. 13, 2131 (2022).


Google Scholar
 

Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).


Google Scholar
 

Ashtiani, F., Geers, A. J. & Aflatouni, F. An on-chip photonic deep neural network for image classification. Nature 606, 501–506 (2022).


Google Scholar
 

Feldmann, J., Youngblood, N., Wright, C. D., Bhaskaran, H. & Pernice, W. H. P. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019).


Google Scholar
 

Dong, B. et al. Higher-dimensional processing using a photonic tensor core with continuous-time data. Nat. Photon. 17, 1080–1088 (2023).


Google Scholar
 

Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).


Google Scholar
 

Nahmias, M. A. et al. An integrated analog O/E/O link for multi-channel laser neurons. Appl. Phys. Lett. 108, 151109 (2016).

Bandyopadhyay, S. et al. Single-chip photonic deep neural network with forward-only training. Nat. Photon. 18, 1335–1343 (2024).


Google Scholar
 

Wang, T. et al. Image sensing with multilayer nonlinear optical neural networks. Nat. Photon. 17, 408–415 (2023).


Google Scholar
 

Pintus, P. et al. Integrated non-reciprocal magneto-optics with ultra-high endurance for photonic in-memory computing. Nat. Photon. 19, 54–62 (2025).


Google Scholar
 

Fan, L., Wang, K., Wang, H., Dutt, A. & Fan, S. Experimental realization of convolution processing in photonic synthetic frequency dimensions. Sci. Adv. 9, eadi4956 (2023).


Google Scholar
 

Zhao, H., Li, B., Li, H. & Li, M. Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics. Nat. Commun. 13, 5426 (2022).


Google Scholar
 

Buddhiraju, S., Dutt, A., Minkov, M., Williamson, I. A. D. & Fan, S. Arbitrary linear transformations for photons in the frequency synthetic dimension. Nat. Commun. 12, 2401 (2021).


Google Scholar
 

Fan, L. et al. Multidimensional convolution operation with synthetic frequency dimensions in photonics. Phys. Rev. Appl. 18, 034088 (2022).


Google Scholar
 

Basani, J. R., Heuck, M., Englund, D. R. & Krastanov, S. All-photonic artificial-neural-network processor via nonlinear optics. Phys. Rev. Appl. 22, 014009 (2024).


Google Scholar
 

Davis III, R., Chen, Z., Hamerly, R. & Englund, D. RF-photonic deep learning processor with Shannon-limited data movement. Sci. Adv. 11, eadt3558 (2025).


Google Scholar
 

Gong, S., Lu, R., Yang, Y., Gao, L. & Hassanien, A. E. Microwave acoustic devices: recent advances and outlook. IEEE J. Microw. 1, 601–609 (2021).


Google Scholar
 

Lu, R. & Gong, S. RF acoustic microsystems based on suspended lithium niobate thin films: advances and outlook. J. Micromech. Microeng 31, 114001 (2021).


Google Scholar
 

Marpaung, D., Yao, J. & Capmany, J. Integrated microwave photonics. Nat. Photon. 13, 80–90 (2019).


Google Scholar
 

Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photon. 13, 242–352 (2021).


Google Scholar
 

Shao, L. et al. Phononic band structure engineering for high-Q gigahertz surface acoustic wave resonators on lithium niobate. Phys. Rev. Appl. 12, 014022 (2019).


Google Scholar
 

Shao, L. et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica 6, 1498–1505 (2019).


Google Scholar
 

Cho, Y. & Yamanouchi, K. Nonlinear, elastic, piezoelectric, electrostrictive, and dielectric constants of lithium niobate. J. Appl. Phys. 61, 875–887 (1987).


Google Scholar
 

Xiao, H., Rasul, K. & Vollgraf, R. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. Preprint at https://arxiv.org/abs/1708.07747 (2017).

LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).


Google Scholar
 

Shao, L. et al. Electrical control of surface acoustic waves. Nat. Electron. 5, 348–355 (2022).


Google Scholar
 

de Castilla, H., Bélanger, P. & Zednik, R. J. High temperature characterization of piezoelectric lithium niobate using electrochemical impedance spectroscopy resonance method. J. Appl. Phys. 122, 244103 (2017).


Google Scholar
 

Hackett, L. et al. Giant electron-mediated phononic nonlinearity in semiconductor–piezoelectric heterostructures. Nat. Mater. 23, 1386–1393 (2024).


Google Scholar
 

Xie, J. et al. Sub-terahertz electromechanics. Nat. Electron. 6, 301–306 (2023).


Google Scholar
 

Liu, B. et al. Surface acoustic wave devices for sensor applications. J. Semicond. 37, 021001 (2016).


Google Scholar
 

Zhou, F. & Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020).


Google Scholar
 

Thomas, J. G. et al. Spectral interferometry-based microwave-frequency vibrometry for integrated acoustic wave devices. Optica 12, 935–944 (2025).


Google Scholar
 

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).


Google Scholar
 

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997).


Google Scholar
 

Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).


Google Scholar
 

Shao, L. Code and plot data for “Synthetic-domain computing and neural networks using lithium niobate integrated nonlinear phononics”. figshare https://doi.org/10.6084/m9.figshare.29376791.v1 (2025).